1 |
FIORINI L, MANCIOPPI, SEMERARO F, et al. Unsupervised emotional state classification through physiological parameters for social robotics applications [J]. Knowledge-Based Systems, 2020, 190: 105217.
|
2 |
WEN YEAN C, WAN AHMAD W K, MUSTAFA W A, et al. An emotion assessment of stroke patients by using bispectrum features of EEG signals [J]. Brain Sciences, 2020, 10(10): 672.
|
3 |
WANG H, WU X, YAO L, et al. Identifying cortical brain directed connectivity networks from high-density EEG for emotion recognition [J]. IEEE Transactions on Affective Computing, 2022, 13(3): 1489-1500.
|
4 |
PEREIRA E T, GOMES H M, VELOSO L R, et al. Empirical evidence relating EEG signal duration to emotion classification performance [J]. IEEE Transactions on Affective Computing, 2021, 12(1): 154-164.
|
5 |
PANDEY P, SEEJA K R. Subject independent emotion recognition from EEG using VMD and deep learning [J]. Journal of King Saud University — Computer and Information Sciences, 2022, 34(5): 1730-1738.
|
6 |
HU W, ZHANG Z, ZHAO H, et al. EEG microstate correlates of emotion dynamics and stimulation content during video watching [J]. Cerebral Cortex, 2023, 33(3): 523-542.
|
7 |
YANG H, HUANG S, GUO S, et al. Multi-classifier fusion based on MI-SFFS for cross-subject emotion recognition [J]. Entropy, 2022, 24(5): 705.
|
8 |
THAMMASAN N, MORIYAMA K, K-I FUKUI, et al. Familiarity effects in EEG-based emotion recognition [J]. Brain Informatics, 2017, 4(1): 39-50.
|
9 |
DANG W-D, LV D-M, LI R-M, et al. Multilayer network-based CNN model for emotion recognition [J]. International Journal of Bifurcation and Chaos, 2022, 32(1): 2250011.
|
10 |
JIA J, ZHANG B, LV H, et al. CR-GCN: channel-relationships-based graph convolutional network for EEG emotion recognition [J]. Brain Sciences, 2022, 12(8): 987.
|
11 |
LI Q, LIU Y, SHANG Y, et al. Deep sparse autoencoder and recursive neural network for EEG emotion recognition [J]. Entropy, 2022, 24(9): 1187.
|
12 |
KOELSTRA S, MUHL C, SOLEYMANI M, et al. DEAP: a database for emotion analysis; using physiological signals [J]. IEEE Transactions on Affective Computing, 2011, 3(1): 18-31.
|
13 |
ZHAO Y, CHEN D. Expression EEG multimodal emotion recognition method based on the bidirectional LSTM and attention mechanism [J]. Computational and Mathematical Methods in Medicine, 2021, 2021: 9967592.
|
14 |
JIANG H, JIAO R, WANG Z, et al. Construction and analysis of emotion computing model based on LSTM [J]. Complexity, 2021, 2021: 8897105.
|
15 |
CHANG H, ZONG Y, ZHENG W, et al. Depression assessment method: an EEG emotion recognition framework based on spatiotemporal neural network [J]. Frontiers in Psychiatry, 2021, 12: 837149.
|
16 |
IYER A, DAS S S, TEOTIA R, et al. CNN and LSTM based ensemble learning for human emotion recognition using EEG recordings [J]. Multimedia Tools and Applications, 2023, 82(4): 4883-4896.
|
17 |
TSIOURIS Κ Μ, PEZOULAS V C, ZERVAKIS M, et al. A long short-term memory deep learning network for the prediction of epileptic seizures using EEG signals [J]. Computers in Biology and Medicine, 2018, 99: 24-37.
|
18 |
DU X, MA C, ZHANG G, et al. An efficient LSTM network for emotion recognition from multichannel EEG signals [J]. IEEE Transactions on Affective Computing, 2022, 13(3): 1528-1540.
|
19 |
LI C, WANG B, ZHANG S L, et al. Emotion recognition from EEG based on multi-task learning with capsule network and attention mechanism [J]. Computers in Biology and Medicine, 2022, 143: 105303.
|
20 |
LIU S, WANG X, ZHAO L, et al. 3DCANN: a spatio-temporal convolution attention neural network for EEG emotion recognition [J]. IEEE Journal of Biomedical and Health Informatics, 2022, 26(11): 5321-5331.
|
21 |
HAJ-ALI H, ANDERSON A K, KRON A. Comparing three models of arousal in the human brain [J]. Social Cognitive and Affective Neuroscience, 2020, 15(1): 1-11.
|
22 |
HOUSSEIN E H, HAMMAD A, ALI A A. Human emotion recognition from EEG-based brain-computer interface using machine learning: a comprehensive review [J]. Neural Computing and Applications, 2022, 34: 12527-12557.
|
23 |
HJORTH B. EEG analysis based on time domain properties [J]. Electroencephalography and Clinical Neurophysiology, 1970, 29(3): 306-310.
|
24 |
FRANTZIDIS C A, BRATSAS C, PAPADELIS C L, et al. Toward emotion aware computing: an integrated approach using multichannel neurophysiological recordings and affective visual stimuli [J]. IEEE Transactions on Information Technology in Biomedicine, 2010, 14(3): 589-597.
|
25 |
CHAO H, DONG L. Emotion recognition using three-dimensional feature and convolutional neural network from multichannel EEG signals [J]. IEEE Sensors Journal, 2021, 21(2): 2024-2034.
|
26 |
XING X, LI Z, XU T, et al. SAE+ LSTM: a new framework for emotion recognition from multi-channel EEG [J]. Frontiers in Neurorobotics, 2019, 13: 37.
|
27 |
WANG Z, GU T, ZHU Yet al. FLDNet: frame-level distilling neural network for EEG emotion recognition [J]. IEEE Journal of Biomedical and Health Informatics, 2021, 25(7): 2533-2544.
|
28 |
JOSHI V M, GHONGADE R B. EEG based emotion detection using fourth order spectral moment and deep learning [J]. Biomedical Signal Processing and Control, 2021, 68: 102755.
|
29 |
WANG Z, WANG Y, ZHANG J, et al. Spatial-temporal feature fusion neural network for EEG-based emotion recognition [J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 2507212.
|
30 |
V-R XEFTERIS, TSANOUSA A, GEORGAKOPOULOU N, et al. Graph theoretical analysis of EEG functional connectivity patterns and fusion with physiological signals for emotion recognition [J]. Sensors, 2022, 22(21): 8198.
|
31 |
GAO Y, FU X, OUYANG T, et al. EEG-GCN: spatio-temporal and self-adaptive graph convolutional networks for single and multi-view EEG-based emotion recognition [J]. IEEE Signal Processing Letters, 2022, 29: 1574-1578.
|