1 |
GUO Z, SCHLICHTKRULL M, VLACHOS A. A survey on automated fact-checking[J]. Transactions of the Association for Computational Linguistics, 2022, 10: 178-206.
|
2 |
AMAZEEN M A. Journalistic interventions: the structural factors affecting the global emergence of fact-checking[J]. Journalism, 2020, 21(1): 95-111.
|
3 |
ZHOU X, ZAFARANI R. A survey of fake news: fundamental theories, detection methods, and opportunities[J]. ACM Computing Surveys, 2020, 53(5): Article No. 109.
|
4 |
DIAS N, SIPPITT A. Researching fact checking: present limitations and future opportunities[J]. The Political Quarterly, 2020, 91(3): 605-613.
|
5 |
HARDALOV M, ARORA A, NAKOV P, et al. A survey on stance detection for mis- and disinformation identification[C]// Finding of the Association for Computational Linguistics: NAACL 2022. Stroudsburg: ACL, 2022: 1259-1277.
|
6 |
DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C] // Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Stroudsburg: ACL, 2018: 4171-4186.
|
7 |
FLORIDI L, CHIRIATTI M. GPT-3: its nature, scope, limits, and consequences[J]. Minds and Machines, 2020, 30: 681-694.
|
8 |
ZHOU Y, MURESANU A I, HAN Z, et al. Large language models are human-level prompt engineers [EB/OL]. [2023-09-29]. .
|
9 |
THORNE J, VLACHOS A, CHRISTODOULOPOULOS C, et al. FEVER: a large-scale dataset for fact extraction and verification[C]// Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2018:809-819.
|
10 |
HU X, GUO Z, WU G, et al. CHEF: a pilot Chinese dataset for evidence-based fact-checking[C]// Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2022: 3362-3376.
|
11 |
HU X, HONG Z, GUO Z, et al. Read it twice: towards faithfully interpretable fact verification by revisiting evidence[C]// Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2023: 2319-2323.
|
12 |
SOLEIMANI A, MONZ C, WORRING M. BERT for evidence retrieval and claim verification[C]// Proceedings of the 42nd European Conference on IR Research. Cham: Springer, 2020: 359-366.
|
13 |
JIANG K, PRADEEP R, LIN J. Exploring listwise evidence reasoning with T5 for fact verification[C]// Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers). Stroudsburg: ACL, 2021: 402-410.
|
14 |
FAJCIK M, MOTLICEK P, SMRZ P. Claim-Dissector: an interpretable fact-checking system with joint re-ranking and veracity prediction[C]// Proceedings of the 2023 Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2023: 10184-10205.
|
15 |
KOTONYA N, TONI F. Explainable automated fact-checking: a survey[C]// Proceedings of the 28th International Conference on Computational Linguistics.[S.l.]: International Committee on Computational Linguistics, 2020: 5430-5443.
|
16 |
RAY P P. ChatGPT: a comprehensive review on background, applications, key challenges, bias, ethics, limitations and future scope[J]. Internet of Things and Cyber-Physical Systems, 2023, 3:121-154.
|
17 |
LIU P, YUAN W, FU J, et al. Pre-train, prompt, and predict: a systematic survey of prompting methods in natural language processing[J]. ACM Computing Surveys, 2023, 55(9): Article No. 195.
|
18 |
KUMARA P, SAHU S K. SIM-BERT: speech intelligence model using NLP-BERT with improved accuracy[M]// Artificial Intelligence and Speech Technology. [S.l.]: CRC Press, 2021: 439.
|
19 |
刘玮, 彭鑫, 李超, 等. 立场分析研究综述[J]. 中文信息学报, 2020, 34(12): 1-8.
|
|
LIU W, PENG X, LI C, et al. A survey on stance detection[J]. Journal of Chinese Information Processing, 2020, 34(12): 1-8.
|
20 |
SHENG Q, CAO J, ZHANG X, et al. Zoom out and observe: news environment perception for fake news detection[C]// Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2022: 4543-4556.
|
21 |
BEKOULIS G, PAPAGIANNOPOULOU C, DELIGIANNIS N. A review on fact extraction and verification[J]. ACM Computing Surveys, 2021, 55(1): Article No. 12.
|
22 |
WANG X, CHEN G, QIAN G, et al. Large-scale multi-modal pre-trained models: a comprehensive survey[J]. Machine Intelligence Research, 2023, 20: 447-482.
|
23 |
LI J, WANG X, TU Z, et al. On the diversity of multi-head attention[J]. Neurocomputing, 2021, 454: 14-24.
|
24 |
NIU Z, ZHONG G, YU H. A review on the attention mechanism of deep learning[J]. Neurocomputing, 2021, 452: 48-62.
|
25 |
TAKAHASHI K, YAMAMOTO K, KUCHIBA A, et al. Confidence interval for micro-averaged F1 and macro-averaged F1 scores[J]. Applied Intelligence, 2022, 52(5): 4961-4972.
|
26 |
VO N, LEE K. Hierarchical multi-head attentive network for evidence-aware fake news detection[C]// Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics. Stroudsburg: ACL, 2021:965-975.
|
27 |
POPAT K, MUKHERJEE S, YATES A, et al. DeClarE: debunking fake news and false claims using evidence-aware deep learning[C]// Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2018: 22-32.
|
28 |
ZHANG Z, HAN X, LIU Z, et al. ERNIE: enhanced language representation with informative entities[C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2019:1441-1451.
|