1 |
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014: 580-587.
|
2 |
REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149.
|
3 |
REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL]. [2023-12-10]..
|
4 |
BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. [2023-10-20]..
|
5 |
WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]// Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 7464-7475.
|
6 |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 779-788.
|
7 |
GE Z, LIU S, WANG F, et al. YOLOX: exceeding YOLO series in 2021[EB/OL]. [2023-11-18]..
|
8 |
SALSCHEIDER N O. FeatureNMS: non-maximum suppression by learning feature embeddings[C]// Proceedings of the 25th International Conference on Pattern Recognition. Piscataway: IEEE, 2021:7848-7854.
|
9 |
LIU S, HUANG D, WANG Y. Adaptive NMS: refining pedestrian detection in a crowd[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 6452-6461.
|
10 |
ZHENG Z, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression [C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2020: 12993-13000.
|
11 |
周飞燕,金林鹏,董军. 卷积神经网络研究综述[J]. 计算机学报, 2017, 40(6):1229-1251.
|
|
ZHOU F Y, JIN L P, DONG J. Review of convolutional neural networks [J]. Chinese Journal of Computers, 2017, 40(6):1229-1251.
|
12 |
DING X, ZHANG X, HAN J, et al. Diverse branch block: building a convolution as an inception-like unit[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 10881-10890.
|
13 |
BAHDANAU D, CHO K, BENGIO Y. Neural machine translation by jointly learning to align and translate [EB/OL]. [2023-10-21]..
|
14 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 6000-6010.
|
15 |
陈洛轩,林成创,郑招良,等. Transformer在计算机视觉场景下的研究综述[J]. 计算机科学, 2023, 50(12):130-147.
|
|
CHEN L X, LIN C C, ZHENG Z L, et al. Review of Transformer in computer vision[J]. Computer Science, 2023, 50(12):130-147.
|
16 |
CHEN C F, PANDA R, FAN Q. RegionViT: regional-to-local attention for vision Transformers [EB/OL]. [2023-10-20]..
|
17 |
CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with Transformers [C]// Proceedings of the 2020 European Conference on Computer Vision, LNCS 12346. Cham: Springer, 2020: 213-229.
|
18 |
ZHU X, SU W, LU L, et al. Deformable DETR: deformable Transformers for end-to-end object detection [EB/OL]. [2023-12-22]..
|
19 |
CHEN Q, CHEN X, WANG J, et al. Group DETR: fast DETR training with group-wise one-to-many assignment [C]// Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2023: 6633-6642.
|
20 |
ZHAO Y, LV W, XU S, et al. DETRs beat YOLOs on real-time object detection[C]// Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2024: 16965-16974.
|
21 |
CHEN J, KAO S H, HE H, et al. Run, don't walk: chasing higher FLOPS for faster neural networks [C]// Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 12021-12031.
|
22 |
ZHANG H, XU C, ZHANG S. Inner-IoU: more effective intersection over union loss with auxiliary bounding box [EB/OL]. [2023-12-20]..
|
23 |
GEVORGYAN Z. SIoU loss: more powerful learning for bounding box regression[EB/OL]. [2023-12-20]..
|
24 |
KUHN H W. The Hungarian method for the assignment problem[J]. Naval Research Logistics, 2005, 52(1): 7-21.
|