1 |
顾冬冬. 医学图像配准深度学习方法与应用研究[D]. 长沙:湖南大学, 2021:004518.
|
|
GU D D. Deep learning methods and applications of medical image registration[D]. Changsha: Hunan University, 2021:004518.
|
2 |
ASHBURNER J. A fast diffeomorphic image registration algorithm[J]. NeuroImage, 2007, 38(1): 95-113.
|
3 |
AVANTS B B, EPSTEIN C L, GROSSMAN M, et al. Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain[J]. Medical Image Analysis, 2008, 12(1): 26-41.
|
4 |
GLOCKER B, KOMODAKIS N, TZIRITAS G, et al. Dense image registration through MRFs and efficient linear programming[J]. Medical Image Analysis, 2008, 12(6): 731-741.
|
5 |
JADERBERG M, SIMONYAN K, ZISSERMAN A. Spatial transformer networks[C]// Proceedings of the 28th International Conference on Neural Information Processing Systems — Volume 2. Cambridge: MIT Press, 2015: 2017-2025.
|
6 |
GU J, WANG Z, KUEN J, et al. Recent advances in convolutional neural networks [J]. Pattern Recognition, 2018, 77: 354-377.
|
7 |
DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[EB/OL]. [2023-11-05]..
|
8 |
CHEN J, FREY E C, HE Y, et al. TransMorph: Transformer for unsupervised medical image registration[J]. Medical Image Analysis, 2022, 82: No.102615.
|
9 |
DENG L, ZOU Y, HUANG S, et al. Deformable 3D medical image registration with convolutional neural network and transformer [J]. Journal of Instrumentation, 2023, 18(4): No.P04029.
|
10 |
BEG M F, MILLER M I, TROUVÉ A, et al. Computing large deformation metric mappings via geodesic flows of diffeomorphisms[J]. International Journal of Computer Vision, 2005, 61(2): 139-157.
|
11 |
CHEN J, LI Y, DU Y, et al. Generating anthropomorphic phantoms using fully unsupervised deformable image registration with convolutional neural networks [J]. Medical Physics, 2020, 47(12): 6366-6380.
|
12 |
VIOLA P, W M, Ⅲ. WELLS Alignment by maximization of mutual information [J]. International Journal of Computer Vision, 1997, 24(2): 137-154.
|
13 |
BALAKRISHNAN G, ZHAO A, SABUNCU M R, et al. VoxelMorph: a learning framework for deformable medical image registration [J]. IEEE Transactions on Medical Imaging, 2019, 38(8): 1788-1800.
|
14 |
VISHNEVSKIY V, GASS T, SZEKELY G, et al. Isotropic total variation regularization of displacements in parametric image registration [J]. IEEE Transactions on Medical Imaging, 2017, 36(2): 385-395.
|
15 |
JOHNSON H J, CHRISTENSEN G E. Consistent landmark and intensity-based image registration[J]. IEEE Transactions on Medical Imaging, 2002, 21(5): 450-461.
|
16 |
YANG X, KWITT R, STYNER M, et al. Quicksilver: fast predictive image registration — a deep learning approach [J]. NeuroImage, 2017, 158: 378-396.
|
17 |
SOKOOTI H, DE VOS B, BERENDSEN F, et al. 3D convolutional neural networks image registration based on efficient supervised learning from artificial deformations [EB/OL]. [2023-11-07]. .
|
18 |
LIU Z, LIN Y, CAO Y, et al. Swin Transformer: hierarchical vision Transformer using shifted windows [C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 9992-10002.
|
19 |
ZHAO Q, ZHONG L, XIAO J, et al. Efficient multi-organ segmentation from 3D abdominal CT images with lightweight network and knowledge distillation[J]. IEEE Transactions on Medical Imaging, 2023, 42(9): 2513-2523.
|
20 |
KIM B, KIM D H, PARK S H, et al. CycleMorph: cycle consistent unsupervised deformable image registration[J]. Medical Image Analysis, 2021, 71: No.102036.
|
21 |
MODAT M, RIDGWAY G R, TAYLOR Z A, et al. Fast free-form deformation using graphics processing units[J]. Computer Methods and Programs in Biomedicine, 2010, 98(3): 278-284.
|
22 |
BALAKRISHNAN G, ZHAO A, SABUNCU M R, et al. An unsupervised learning model for deformable medical image registration [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 9252-9260.
|
23 |
QIU H, QIN C, SCHUH A, et al. Learning diffeomorphic and modality-invariant registration using B-splines [C]// Proceedings of the 4th Conference on Medical Imaging with Deep Learning. New York: JMLR.org, 2021: 645-664.
|
24 |
CHEN J, HE Y, FREY E C, et al. ViT-V-Net: vision Transformer for unsupervised volumetric medical image registration [EB/OL]. [2023-11-07]..
|
25 |
WANG W, XIE E, LI X, et al. Pyramid vision Transformer: a versatile backbone for dense prediction without convolution [C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 548-558.
|
26 |
XIE Y, ZHANG J, SHEN C, et al. CoTr: efficiently bridging CNN and Transformer for 3D medical image segmentation[C]// Proceedings of the 2021 International Conference on Medical Image Computing and Computer Assisted Intervention, LNCS 12903. Cham: Springer, 2021: 171-180.
|
27 |
ZHOU H Y, GUO J, ZHANG Y, et al. nnFormer: interleaved transformer for volumetric segmentation [J]. IEEE Transactions on Image Processing, 2023, 32: 4036-4045.
|