《计算机应用》唯一官方网站 ›› 2024, Vol. 44 ›› Issue (4): 1065-1071.DOI: 10.11772/j.issn.1001-9081.2023040533
所属专题: 人工智能
收稿日期:
2023-05-06
修回日期:
2023-07-20
接受日期:
2023-07-24
发布日期:
2024-04-22
出版日期:
2024-04-10
通讯作者:
朱焱
作者简介:
王海涵(1999—),男,山东潍坊人,硕士研究生,主要研究方向:自然语言处理基金资助:
Received:
2023-05-06
Revised:
2023-07-20
Accepted:
2023-07-24
Online:
2024-04-22
Published:
2024-04-10
Contact:
Yan ZHU
About author:
WANG Haihan, born in 1999, M. S. candidate. His research interests include natural language processing.Supported by:
摘要:
互联网上的攻击性言论严重扰乱了正常网络秩序,破坏了健康交流的网络环境。现有的检测技术更关注文本中的鲜明特征,难以发现更隐晦的攻击方式。针对上述问题,提出融合反讽机制的攻击性言论检测模型BSWD(Bidirectional Encoder Representation from Transformers-based Sarcasm and Word Detection)。首先,提出基于反讽机制的模型Sarcasm-BERT,以检测言论中的语义冲突;其次,提出细粒度词汇攻击性特征提取模型WordsDetect,检测言论中的攻击性词汇;最后,融合两种模型得到BSWD。实验结果表明,与BERT(Bidirectional Encoder Representation from Transformers)、HateBERT模型相比,所提模型的准确率、精确率、召回率和F1分数指标大部分能提升2%,显著提高了检测性能,更能发现隐含的攻击性言论;同时,与SKS(Sentiment Knowledge Sharing)、BiCHAT(Bidirectional long short-term memory with deep Convolution neural network and Hierarchical ATtention)模型相比,具有更强的泛化能力和鲁棒性。以上结果验证了BSWD检测隐晦攻击性言论的有效性。
中图分类号:
王海涵, 朱焱. 融合反讽机制的攻击性言论检测[J]. 计算机应用, 2024, 44(4): 1065-1071.
Haihan WANG, Yan ZHU. Offensive speech detection with irony mechanism[J]. Journal of Computer Applications, 2024, 44(4): 1065-1071.
数据集 | 训练集样本数 | 测试集样本数 | 总样本数 |
---|---|---|---|
OLID | 13 240 | 860 | 14 100 |
HateBase | 19 826 | 4 957 | 24 783 |
HateXplain | 16 118 | 4 030 | 20 148 |
Implicit Hate Corpus | 17 184 | 4 296 | 21 480 |
HatEval-2019 | 9 000 | 1 000 | 10 000 |
表1 数据集统计数据
Tab. 1 Dataset statistics
数据集 | 训练集样本数 | 测试集样本数 | 总样本数 |
---|---|---|---|
OLID | 13 240 | 860 | 14 100 |
HateBase | 19 826 | 4 957 | 24 783 |
HateXplain | 16 118 | 4 030 | 20 148 |
Implicit Hate Corpus | 17 184 | 4 296 | 21 480 |
HatEval-2019 | 9 000 | 1 000 | 10 000 |
模型 | ACC | P | R | Macro-F1 |
---|---|---|---|---|
BiLSTM | 82.09 | 78.12 | 75.47 | 76.48 |
BiCHAT | 83.49 | 81.61 | 75.14 | 77.39 |
HN-ATT | 82.79 | 79.32 | 76.19 | 78.69 |
SKS | 83.72 | 77.22 | 80.68 | 78.62 |
SMSD | 83.72 | 80.90 | 77.13 | 78.69 |
BERT | 84.67 | 83.67 | 79.02 | 80.83 |
HateBERT | 85.50 | 83.08 | 79.45 | 80.94 |
BSWD | 87.35 | 85.48 | 81.79 | 83.48 |
表2 不同模型在OLID数据集上的实验结果 (%)
Tab. 2 Experimental results of different models on OLID dataset
模型 | ACC | P | R | Macro-F1 |
---|---|---|---|---|
BiLSTM | 82.09 | 78.12 | 75.47 | 76.48 |
BiCHAT | 83.49 | 81.61 | 75.14 | 77.39 |
HN-ATT | 82.79 | 79.32 | 76.19 | 78.69 |
SKS | 83.72 | 77.22 | 80.68 | 78.62 |
SMSD | 83.72 | 80.90 | 77.13 | 78.69 |
BERT | 84.67 | 83.67 | 79.02 | 80.83 |
HateBERT | 85.50 | 83.08 | 79.45 | 80.94 |
BSWD | 87.35 | 85.48 | 81.79 | 83.48 |
模型 | ACC | P | R | Macro-F1 |
---|---|---|---|---|
BiLSTM | 94.14 | 89.69 | 89.77 | 89.73 |
BiCHAT | 94.90 | 90.22 | 92.26 | 91.19 |
HN-ATT | 95.25 | 91.07 | 92.48 | 91.75 |
SKS | 94.86 | 94.45 | 89.14 | 91.49 |
SMSD | 95.27 | 90.37 | 93.37 | 91.77 |
BERT | 96.71 | 93.22 | 93.26 | 93.24 |
HateBERT | 95.99 | 92.63 | 93.00 | 92.82 |
BSWD | 97.12 | 94.83 | 94.68 | 94.75 |
表3 不同模型在HateBase数据集上的实验结果 (%)
Tab. 3 Experimental results of different models on HateBase dataset
模型 | ACC | P | R | Macro-F1 |
---|---|---|---|---|
BiLSTM | 94.14 | 89.69 | 89.77 | 89.73 |
BiCHAT | 94.90 | 90.22 | 92.26 | 91.19 |
HN-ATT | 95.25 | 91.07 | 92.48 | 91.75 |
SKS | 94.86 | 94.45 | 89.14 | 91.49 |
SMSD | 95.27 | 90.37 | 93.37 | 91.77 |
BERT | 96.71 | 93.22 | 93.26 | 93.24 |
HateBERT | 95.99 | 92.63 | 93.00 | 92.82 |
BSWD | 97.12 | 94.83 | 94.68 | 94.75 |
模型 | ACC | P | R | Macro-F1 |
---|---|---|---|---|
BiLSTM | 71.96 | 71.94 | 72.42 | 71.84 |
BiCHAT | 72.51 | 72.27 | 72.72 | 72.28 |
HN-ATT | 73.99 | 73.49 | 73.73 | 73.57 |
SKS | 74.27 | 74.50 | 74.02 | 74.05 |
SMSD | 74.17 | 73.61 | 73.54 | 73.59 |
BERT | 76.01 | 75.57 | 75.08 | 75.27 |
HateBERT | 75.20 | 75.27 | 75.30 | 75.29 |
BSWD | 78.58 | 78.16 | 77.94 | 78.04 |
表4 不同模型在HateXplain数据集上的实验结果 (%)
Tab. 4 Experimental results of different models on HateXplain dataset
模型 | ACC | P | R | Macro-F1 |
---|---|---|---|---|
BiLSTM | 71.96 | 71.94 | 72.42 | 71.84 |
BiCHAT | 72.51 | 72.27 | 72.72 | 72.28 |
HN-ATT | 73.99 | 73.49 | 73.73 | 73.57 |
SKS | 74.27 | 74.50 | 74.02 | 74.05 |
SMSD | 74.17 | 73.61 | 73.54 | 73.59 |
BERT | 76.01 | 75.57 | 75.08 | 75.27 |
HateBERT | 75.20 | 75.27 | 75.30 | 75.29 |
BSWD | 78.58 | 78.16 | 77.94 | 78.04 |
模型 | ACC | P | R | Macro-F1 |
---|---|---|---|---|
BiLSTM | 72.95 | 72.94 | 73.44 | 72.80 |
BiCHAT | 74.09 | 73.98 | 72.47 | 72.81 |
HN-ATT | 74.54 | 74.01 | 73.71 | 73.83 |
SKS | 75.88 | 74.21 | 74.69 | 74.42 |
SMSD | 74.61 | 74.09 | 74.26 | 74.16 |
BERT | 76.18 | 74.79 | 73.97 | 74.30 |
HateBERT | 75.29 | 75.07 | 75.16 | 75.11 |
BSWD | 78.45 | 77.33 | 76.53 | 76.87 |
表5 不同模型在Implicit Hate Corpus数据集上的实验结果 (%)
Tab. 5 Experimental results of different models on Implicit Hate Corpus dataset
模型 | ACC | P | R | Macro-F1 |
---|---|---|---|---|
BiLSTM | 72.95 | 72.94 | 73.44 | 72.80 |
BiCHAT | 74.09 | 73.98 | 72.47 | 72.81 |
HN-ATT | 74.54 | 74.01 | 73.71 | 73.83 |
SKS | 75.88 | 74.21 | 74.69 | 74.42 |
SMSD | 74.61 | 74.09 | 74.26 | 74.16 |
BERT | 76.18 | 74.79 | 73.97 | 74.30 |
HateBERT | 75.29 | 75.07 | 75.16 | 75.11 |
BSWD | 78.45 | 77.33 | 76.53 | 76.87 |
模型 | ACC | P | R | Macro-F1 |
---|---|---|---|---|
BiLSTM | 71.00 | 70.88 | 71.32 | 70.80 |
BiCHAT | 72.40 | 72.08 | 70.81 | 71.10 |
HN-ATT | 71.90 | 71.42 | 71.72 | 71.51 |
SKS | 71.10 | 70.90 | 70.62 | 70.70 |
SMSD | 73.20 | 72.63 | 72.74 | 72.68 |
BERT | 76.18 | 74.79 | 73.97 | 74.30 |
HateBERT | 74.80 | 74.56 | 74.51 | 74.53 |
BSWD | 78.25 | 77.55 | 78.03 | 77.65 |
表6 不同模型在HatEval-2019数据集上的实验结果 (%)
Tab. 6 Experimental results of different models on HatEval-2019 dataset
模型 | ACC | P | R | Macro-F1 |
---|---|---|---|---|
BiLSTM | 71.00 | 70.88 | 71.32 | 70.80 |
BiCHAT | 72.40 | 72.08 | 70.81 | 71.10 |
HN-ATT | 71.90 | 71.42 | 71.72 | 71.51 |
SKS | 71.10 | 70.90 | 70.62 | 70.70 |
SMSD | 73.20 | 72.63 | 72.74 | 72.68 |
BERT | 76.18 | 74.79 | 73.97 | 74.30 |
HateBERT | 74.80 | 74.56 | 74.51 | 74.53 |
BSWD | 78.25 | 77.55 | 78.03 | 77.65 |
模型 | ACC | P | R | Macro-F1 |
---|---|---|---|---|
BERT | 84.67 | 83.67 | 79.02 | 80.83 |
WordsDetect | 86.64 | 84.52 | 81.15 | 82.57 |
Sarcasm-BERT | 86.90 | 85.57 | 80.54 | 82.51 |
BSWD | 87.35 | 85.48 | 81.79 | 83.48 |
表7 OLID数据集上消融实验结果 (%)
Tab. 7 Ablation experiment results on OLID dataset
模型 | ACC | P | R | Macro-F1 |
---|---|---|---|---|
BERT | 84.67 | 83.67 | 79.02 | 80.83 |
WordsDetect | 86.64 | 84.52 | 81.15 | 82.57 |
Sarcasm-BERT | 86.90 | 85.57 | 80.54 | 82.51 |
BSWD | 87.35 | 85.48 | 81.79 | 83.48 |
模型 | ACC | P | R | Macro-F1 |
---|---|---|---|---|
BERT | 96.71 | 93.22 | 93.26 | 93.24 |
WordsDetect | 96.84 | 93.79 | 94.66 | 94.22 |
Sarcasm-BERT | 96.89 | 94.77 | 94.08 | 94.42 |
BSWD | 97.12 | 94.83 | 94.68 | 94.75 |
表8 HateBase数据集上消融实验结果 (%)
Tab. 8 Ablation experiment results on HateBase dataset
模型 | ACC | P | R | Macro-F1 |
---|---|---|---|---|
BERT | 96.71 | 93.22 | 93.26 | 93.24 |
WordsDetect | 96.84 | 93.79 | 94.66 | 94.22 |
Sarcasm-BERT | 96.89 | 94.77 | 94.08 | 94.42 |
BSWD | 97.12 | 94.83 | 94.68 | 94.75 |
模型 | ACC | P | R | Macro-F1 |
---|---|---|---|---|
BERT | 76.01 | 75.57 | 75.08 | 75.27 |
WordsDetect | 78.01 | 77.56 | 77.40 | 77.47 |
Sarcasm-BERT | 78.06 | 77.63 | 77.38 | 77.49 |
BSWD | 78.58 | 78.16 | 77.94 | 78.04 |
表9 HateXplain数据集上消融实验结果 (%)
Tab. 9 Ablation experiment results on HateXplain dataset
模型 | ACC | P | R | Macro-F1 |
---|---|---|---|---|
BERT | 76.01 | 75.57 | 75.08 | 75.27 |
WordsDetect | 78.01 | 77.56 | 77.40 | 77.47 |
Sarcasm-BERT | 78.06 | 77.63 | 77.38 | 77.49 |
BSWD | 78.58 | 78.16 | 77.94 | 78.04 |
模型 | ACC | P | R | Macro-F1 |
---|---|---|---|---|
BERT | 76.18 | 74.79 | 73.97 | 74.30 |
WordsDetect | 77.80 | 76.58 | 75.68 | 76.05 |
Sarcasm-BERT | 78.08 | 76.84 | 76.49 | 76.65 |
BSWD | 78.45 | 77.33 | 76.53 | 76.87 |
表10 Implicit Hate Corpus数据集上消融实验结果 (%)
Tab. 10 Ablation experiment results on Implicit Hate Corpus dataset
模型 | ACC | P | R | Macro-F1 |
---|---|---|---|---|
BERT | 76.18 | 74.79 | 73.97 | 74.30 |
WordsDetect | 77.80 | 76.58 | 75.68 | 76.05 |
Sarcasm-BERT | 78.08 | 76.84 | 76.49 | 76.65 |
BSWD | 78.45 | 77.33 | 76.53 | 76.87 |
模型 | ACC | P | R | Macro-F1 |
---|---|---|---|---|
BERT | 76.18 | 74.79 | 73.97 | 74.30 |
WordsDetect | 76.66 | 76.93 | 77.39 | 77.04 |
Sarcasm-BERT | 78.04 | 76.84 | 77.34 | 76.95 |
BSWD | 78.25 | 77.55 | 78.03 | 77.65 |
表11 HatEval-2019数据集上消融实验结果 (%)
Tab. 11 Ablation experiment results on HatEval-2019 dataset
模型 | ACC | P | R | Macro-F1 |
---|---|---|---|---|
BERT | 76.18 | 74.79 | 73.97 | 74.30 |
WordsDetect | 76.66 | 76.93 | 77.39 | 77.04 |
Sarcasm-BERT | 78.04 | 76.84 | 77.34 | 76.95 |
BSWD | 78.25 | 77.55 | 78.03 | 77.65 |
1 | LEE H-S, LEE H-R, J-U PARK, et al. An abusive text detection system based on enhanced abusive and non-abusive word lists[J]. Decision Support Systems, 2018, 113: 22-31. 10.1016/j.dss.2018.06.009 |
2 | LEE J-H, J-U PARK, J-W CHA, et al. Detecting context abusiveness using hierarchical deep learning[C]// Proceedings of the Second Workshop on Natural Language Processing for Internet Freedom: Censorship, Disinformation, and Propaganda. Stroudsburg: ACL, 2019: 10-19. 10.18653/v1/d19-5002 |
3 | WANG K, LU D, HAN C, et al. Detect all abuse! Toward universal abusive language detection models[C]// Proceedings of the 28th International Conference on Computational Linguistics. Barcelona: International Committee on Computational Linguistics, 2020: 6366-6376. 10.18653/v1/2020.coling-main.560 |
4 | WIEGAND M, RUPPENHOFER J, KLEINBAUER T. Detection of abusive language: the problem of biased datasets[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Stroudsburg: ACL, 2019: 602-608. |
5 | ELSHERIEF M, ZIEMS C, MUCHLINSKI D, et al. Latent hatred: a benchmark for understanding implicit hate speech[C]// Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2021: 345-363. 10.18653/v1/2021.emnlp-main.29 |
6 | CASELLI T, BASILE V, MITROVIĆ J, et al. I feel offended, don’t be abusive! Implicit/explicit messages in offensive and abusive language[C]// Proceedings of the 12th Language Resources and Evaluation Conference. Paris: Eruopean Language Resources Association, 2020: 6193-6202. 10.18653/v1/2021.woah-1.3 |
7 | ARANGO A, PÉREZ J, POBLETE B. Hate speech detection is not as easy as you may think: a closer look at model validation[C]// Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2019: 45-54. 10.1145/3331184.3331262 |
8 | YIN W, ZUBIAGA A. Towards generalisable hate speech detection: a review on obstacles and solutions[J]. PeerJ Computer Science, 2021, 7: e598. 10.7717/peerj-cs.598 |
9 | DEVLIN J, CHANG M-W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Stroudsburg: ACL, 2019: 4171-4186. 10.18653/v1/n18-2 |
10 | CHAKRABARTY T, GUPTA K, MURESAN S. Pay “attention” to your context when classifying abusive language[C]// Proceedings of the Third Workshop on Abusive Language Online. Stroudsburg: ACL, 2019: 70-79. 10.18653/v1/w19-3508 |
11 | RODRÍGUEZ-SÁNCHEZ F, CARRILLO-DE-ALBORNOZ J, PLAZA L. Automatic classification of sexism in social networks: an empirical study on twitter data[J]. IEEE Access, 2020, 8: 219563-219576. 10.1109/access.2020.3042604 |
12 | KAPIL P, EKBAL A. A deep neural network based multi-task learning approach to hate speech detection[J]. Knowledge-Based Systems, 2020, 210: 106458. 10.1016/j.knosys.2020.106458 |
13 | ZHOU Y, YANG Y, LIU H, et al. Deep learning based fusion approach for hate speech detection[J]. IEEE Access, 2020, 8: 128923-128929. 10.1109/access.2020.3009244 |
14 | WULLACH T, ADLER A, MINKOV E. Towards hate speech detection at large via deep generative modeling[J]. IEEE Internet Computing, 2021, 25(2): 48-57. 10.1109/mic.2020.3033161 |
15 | ZHOU X, YONG Y, FAN X, et al. Hate speech detection based on sentiment knowledge sharing[C]// Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Stroudsburg: ACL, 2021: 7158-7166. 10.18653/v1/2021.acl-long.556 |
16 | FORTUNA P, SOLER-COMPANY J, WANNER L. How well do hate speech, toxicity, abusive and offensive language classification models generalize across datasets? [J]. Information Processing & Management, 2021, 58(3): 102524. 10.1016/j.ipm.2021.102524 |
17 | KHAN S, KAMAL A, FAZIL M, et al. HCovBi-Caps: hate speech detection using convolutional and bi-directional gated recurrent unit with Capsule network[J]. IEEE Access, 2022, 10: 7881-7894. 10.1109/access.2022.3143799 |
18 | KHAN S, FAZIL M, SEJWAL V K, et al. BiCHAT: BiLSTM with deep CNN and hierarchical attention for hate speech detection[J]. Journal of King Saud University — Computer and Information Sciences, 2022, 34(7): 4335-4344. 10.1016/j.jksuci.2022.05.006 |
19 | GROLMAN E, BINYAMINI H, SHABTAI A, et al. HateVersarial: adversarial attack against hate speech detection algorithms on twitter[C]// Proceedings of the 30th ACM Conference on User Modeling, Adaption and Personalization. New York: ACM, 2022: 143-152. 10.1145/3503252.3531309 |
20 | LI J, NING Y. Anti-asian hate speech detection via data augmented semantic relation inference[C]// Proceedings of the Sixteenth International AAAI Conference on Web and Social Media. Palo Alto: AAAI Press, 2022: 607-617. 10.1609/icwsm.v16i1.19319 |
21 | KIM Y, PARK S, HAN Y-S. Generalizable implicit hate speech detection using contrastive learning[C]// Proceedings of the 29th International Conference on Computational Linguistics. [S.l.]: International Committee on Computational Linguistics, 2022: 6667-6679. 10.18653/v1/2023.findings-emnlp.731 |
22 | WIEGAND M, RUPPENHOFER J, SCHMIDT A, et al. Inducing a lexicon of abusive words — a feature-based approach[C]// Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Stroudsburg: ACL, 2018: 1046-1056. 10.18653/v1/n18-1095 |
23 | ZAMPIERI M, MALMASI S, NAKOV P, et al. Predicting the type and target of offensive posts in social media[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Stroudsburg: ACL, 2019: 1415-1420. 10.18653/v1/n19-1144 |
24 | DAVIDSON T, WARMSLEY D, MACY M, et al. Automated hate speech detection and the problem of offensive language[C]// Proceedings of the Eleventh International AAAI Conference on Web and Social Media. Palo Alto: AAAI Press, 2017: 512-515. 10.1609/icwsm.v11i1.14955 |
25 | MATHEW B, SAHA P, YIMAM S M, et al. HateXplain: a benchmark dataset for explainable hate speech detection[C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2021: 14867-14875. 10.1609/aaai.v35i17.17745 |
26 | YANG Z, YANG D, DYER C, et al. Hierarchical attention networks for document classification[C]// Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2016: 1480-1489. 10.18653/v1/n16-1174 |
27 | XIONG T, ZHANG P, ZHU H, et al. Sarcasm detection with self-matching networks and low-rank bilinear pooling[C]// Proceedings of the 2019 World Wide Web Conference. New York: ACM, 2019: 2115-2124. 10.1145/3308558.3313735 |
28 | CASELLI T, BASILE V, MITROVIĆ J, et al. HateBERT: retraining BERT for abusive language detection in English[C]// Proceedings of the 5th Workshop on Online Abuse and Harms Stroudsburg: ACL, 2021: 17-25. 10.18653/v1/2021.woah-1.3 |
[1] | 赵志强, 马培红, 黑新宏. 基于双重注意力机制的人群计数方法[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2886-2892. |
[2] | 秦璟, 秦志光, 李发礼, 彭悦恒. 基于概率稀疏自注意力神经网络的重性抑郁疾患诊断[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2970-2974. |
[3] | 李力铤, 华蓓, 贺若舟, 徐况. 基于解耦注意力机制的多变量时序预测模型[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2732-2738. |
[4] | 薛凯鹏, 徐涛, 廖春节. 融合自监督和多层交叉注意力的多模态情感分析网络[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2387-2392. |
[5] | 汪雨晴, 朱广丽, 段文杰, 李书羽, 周若彤. 基于交互注意力机制的心理咨询文本情感分类模型[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2393-2399. |
[6] | 高鹏淇, 黄鹤鸣, 樊永红. 融合坐标与多头注意力机制的交互语音情感识别[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2400-2406. |
[7] | 李钟华, 白云起, 王雪津, 黄雷雷, 林初俊, 廖诗宇. 基于图像增强的低照度人脸检测[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2588-2594. |
[8] | 莫尚斌, 王文君, 董凌, 高盛祥, 余正涛. 基于多路信息聚合协同解码的单通道语音增强[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2611-2617. |
[9] | 熊武, 曹从军, 宋雪芳, 邵云龙, 王旭升. 基于多尺度混合域注意力机制的笔迹鉴别方法[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2225-2232. |
[10] | 李欢欢, 黄添强, 丁雪梅, 罗海峰, 黄丽清. 基于多尺度时空图卷积网络的交通出行需求预测[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2065-2072. |
[11] | 毛典辉, 李学博, 刘峻岭, 张登辉, 颜文婧. 基于并行异构图和序列注意力机制的中文实体关系抽取模型[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2018-2025. |
[12] | 刘丽, 侯海金, 王安红, 张涛. 基于多尺度注意力的生成式信息隐藏算法[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2102-2109. |
[13] | 徐松, 张文博, 王一帆. 基于时空信息的轻量视频显著性目标检测网络[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2192-2199. |
[14] | 李大海, 王忠华, 王振东. 结合空间域和频域信息的双分支低光照图像增强网络[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2175-2182. |
[15] | 魏文亮, 王阳萍, 岳彪, 王安政, 张哲. 基于光照权重分配和注意力的红外与可见光图像融合深度学习模型[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2183-2191. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||