| 1 | 陈子睿,王鑫,王林,等.开放领域知识图谱问答研究综述[J].计算机科学与探索, 2021, 15(10): 1843-1869. | 
																													
																						|  | CHEN Z R, WANG X, WANG L, et al. Survey of open-domain knowledge graph question answering [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(10): 1843-1869. | 
																													
																						| 2 | HUANG H, WANG Y, FENG C, et al. Leveraging conceptualization for short-text embedding [J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 30(7): 1282-1295. | 
																													
																						| 3 | CHEN Y, LI H, QI G, et al. Outlining and filling: hierarchical query graph generation for answering complex questions over knowledge graphs [J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(8): 8343-8357. | 
																													
																						| 4 | HE H, BALAKRISHNAN A, ERIC M, et al. Learning symmetric collaborative dialogue agents with dynamic knowledge graph embeddings [C]// Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg: ACL, 2017: 1766-1776. | 
																													
																						| 5 | YANG A, WANG Q, LIU J, et al. Enhancing pre-trained language representations with rich knowledge for machine reading comprehension [C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2019: 2346-2357. | 
																													
																						| 6 | 侯中妮,靳小龙,陈剑赟,等.知识图谱可解释推理研究综述[J].软件学报, 2022, 33(12): 4644-4667. | 
																													
																						|  | HOU Z N, JIN X L, CHEN J Y, et al. Survey of interpretable reasoning on knowledge graphs [J]. Journal of Software, 2022, 33(12): 4644-4667. | 
																													
																						| 7 | LIANG Y, XU F, ZHANG S H, et al. Knowledge graph construction with structure and parameter learning for indoor scene design [J]. Computational Visual Media, 2018, 4(2): 123-137. | 
																													
																						| 8 | 陈跃鹤,谈川源,陈文亮,等.结合多重嵌入表示的中文知识图谱补全[J].中文信息学报, 2023, 37(1): 54-63. | 
																													
																						|  | CHEN Y H, TAN C Y, CHEN W L, et al. Chinese knowledge graph complementation with multiple embeddings [J]. Journal of Chinese Information Processing, 2023, 37(1): 54-63. | 
																													
																						| 9 | WANG Y, LIU Y, ZHANG H, et al. Leveraging lexical semantic information for learning concept-based multiple embedding representations for knowledge graph completion [C]// Proceedings of the 2019 Asia-Pacific Web (APWeb) and Web-Age Information Management (WAIM) Joint International Conference on Web and Big Data, LNCS 11641. Cham: Springer, 2019: 382-397. | 
																													
																						| 10 | BORDES A, USUNIER N, GARCIA-DURÁN A, et al. Translating embeddings for modeling multi-relational data [C]// Proceedings of the 26th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2013: 2787-2795. | 
																													
																						| 11 | WANG Z, ZHANG J, FENG J, et al. Knowledge graph embedding by translating on hyperplanes [C]// Proceedings of the 28th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2014: 1112-1119. | 
																													
																						| 12 | LIN Y, LIU Z, SUN M, et al. Learning entity and relation embeddings for knowledge graph completion [C]// Proceedings of the 29th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2015: 2181-2187. | 
																													
																						| 13 | YANG B, YIH W T, HE X, et al. Embedding entities and relations for learning and inference in knowledge bases [EB/OL]. [2023-11-13]. . | 
																													
																						| 14 | 李源,马新宇,杨国利,等.面向知识图谱和大语言模型的因果关系推断综述[J].计算机科学与探索, 2023, 17(10): 2358-2376. | 
																													
																						|  | LI Y, MA X Y, ZHAO G L, et al. Survey of causal inference for knowledge graphs and large language models [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(10): 2358-2376. | 
																													
																						| 15 | LAO N, COHEN W W. Relational retrieval using a combination of path-constrained random walks [J]. Machine Learning, 2010, 81(1): 53-67. | 
																													
																						| 16 | NICKEL M, TRESP V, KRIEGEL H P. A three-way model for collective learning on multi-relational data [C]// Proceedings of the 28th International Conference on Machine Learning. Madison, WI: Omnipress, 2011: 809-816. | 
																													
																						| 17 | TROUILLON T, WELBL J, RIEDEL S, et al. Complex embeddings for simple link prediction [C]// Proceedings of the 33rd International Conference on Machine Learning. New York: JMLR.org, 2016: 2071-2080. | 
																													
																						| 18 | DETTMERS T, MINERVINI P, STENETORP P, et al. Convolutional 2D knowledge graph embeddings [C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2018: 1811-1818. | 
																													
																						| 19 | BALAŽEVIĆ I, ALLEN C, HOSPEDALES T M. Hypernetwork knowledge graph embeddings [C]// Proceedings of the 2019 International Conference on Artificial Neural Networks: Workshop and Special Sessions, LNCS 11731. Cham: Springer, 2019: 553-565. | 
																													
																						| 20 | LE T, LE N, LE B. Knowledge graph embedding by relational rotation and complex convolution for link prediction [J]. Expert Systems with Applications, 2023, 214: No.119122. | 
																													
																						| 21 | XIONG B, ZHU S, NAYYERI M, et al. Ultrahyperbolic knowledge graph embeddings [C]// Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2022: 2130-2139. | 
																													
																						| 22 | WANG Q, LIU J, LUO Y, et al. Knowledge base completion via coupled path ranking [C]// Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg: ACL, 2016: 1308-1318. | 
																													
																						| 23 | NEELAKANTAN A, ROTH B, McCALLUM A. Compositional vector space models for knowledge base inference [C]// Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Stroudsburg: ACL, 2015: 156-166. | 
																													
																						| 24 | McCALLUM A, NEELAKANTAN A, BELANGER D, et al. Chains of reasoning over entities, relations, and text using recurrent neural networks [C]// Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers. Stroudsburg: ACL, 2017: 132-141. | 
																													
																						| 25 | JAGVARAL B, LEE W K, ROH J S, et al. Path-based reasoning approach for knowledge graph completion using CNN-BiLSTM with attention mechanism [J]. Expert Systems with Applications, 2020, 142: No.112960. | 
																													
																						| 26 | XIONG W, HOANG T L G, WANG W Y. DeepPath: a reinforcement learning method for knowledge graph reasoning [C]// Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2017: 564-573. | 
																													
																						| 27 | DAS R, DHULIAWALA S, ZAHEER M, et al. Go for a walk and arrive at the answer: reasoning over paths in knowledge bases using reinforcement learning [EB/OL]. [2023-11-13]. . | 
																													
																						| 28 | LI S, WANG H, PAN R, et al. MemoryPath: a deep reinforcement learning framework for incorporating memory component into knowledge graph reasoning [J]. Neurocomputing, 2021, 419: 273-286. | 
																													
																						| 29 | BALLOCCU G, BORATTO L, FENU G, et al. Reinforcement recommendation reasoning through knowledge graphs for explanation path quality [J]. Knowledge-Based Systems, 2023, 260: No.110098. | 
																													
																						| 30 | SHEN Y, DING N, ZHENG H T, et al. Modeling relation paths for knowledge graph completion [J]. IEEE Transactions on Knowledge and Data Engineering, 2021, 33(11): 3607-3617. | 
																													
																						| 31 | LI C, PENG X, ZHANG S, et al. Modeling relation paths for knowledge base completion via joint adversarial training [J]. Knowledge-Based Systems, 2020, 201/202: No.105865. | 
																													
																						| 32 | WANG Y, XIAO W, TAN Z, et al. Caps-OWKG: a capsule network model for open-world knowledge graph [J]. International Journal of Machine Learning and Cybernetics, 2021, 12(6): 1627-1637. | 
																													
																						| 33 | SCHLICHTKRULL M, KIPF T N, BLOEM P, et al. Modeling relational data with graph convolutional networks [C]// Proceedings of the 2018 European Semantic Web Conference, LNCS 10843. Cham: Springer, 2018: 593-607. | 
																													
																						| 34 | TOUTANOVA K, CHEN D. Observed versus latent features for knowledge base and text inference [C]// Proceedings of the 3rd Workshop on Continuous Vector Space Models and Their Compositionality. Stroudsburg: ACL, 2015: 57-66. |