1 |
YANG L, PENG H, ZHANG D, et al. Revisiting anchor mechanisms for temporal action localization [J]. IEEE Transactions on Image Processing, 2020, 29: 8535-8548.
|
2 |
ZHAO T, HAN J, YANG L, et al. SODA: weakly supervised temporal action localization based on astute background response and self-distillation learning [J]. International Journal of Computer Vision, 2021, 129(8): 2474-2498.
|
3 |
WANG L, XIONG Y, WANG Z, et al. Temporal segment networks for action recognition in videos [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 41(11): 2740-2755.
|
4 |
李永刚,王朝晖,万晓依,等.基于深度残差双单向DLSTM的时空一致视频事件识别[J].计算机学报, 2018, 41(12): 2852-2866.
|
|
LI Y G, WANG Z H, WAN X Y, et al. Deep residual dual unidirectional DLSTM for video event recognition with spatial-temporal consistency [J]. Chinese Journal of Computers, 2018, 41(12): 2852-2866.
|
5 |
ESTEVAM V, PEDRINI H, MENOTTI D. Zero-shot action recognition in videos: a survey [J]. Neurocomputing, 2021, 439: 159-175.
|
6 |
HUYNH D, ELHAMIFAR E. A shared multi-attention framework for multi-label zero-shot learning [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 8773-8783.
|
7 |
PENG B, LEI J, FU H, et al. Deep video action clustering via spatio-temporal feature learning [J]. Neurocomputing, 2021, 456: 519-527.
|
8 |
LIU L, ZHOU T, LONG G, et al. Attribute propagation network for graph zero-shot learning [C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2020: 4868-4875.
|
9 |
KAMPFFMEYER M, CHEN Y, LIANG X, et al. Rethinking knowledge graph propagation for zero-shot learning [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 11479-11488.
|
10 |
HONG M, ZHANG X, LI G, et al. Multi-modal multi-grained embedding learning for generalized zero-shot video classification [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33(10): 5959-5972.
|
11 |
LIN L, ZHANG J, LIU J. Actionlet-dependent contrastive learning for unsupervised skeleton-based action recognition [C]// Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 2363-2372.
|
12 |
GAO J, HOU Y, GUO Z, et al. Learning spatio-temporal semantics and cluster relation for zero-shot action recognition [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33(11): 6519-6530.
|
13 |
YANG H, REN Z, YUAN H, et al. Contrastive self-supervised representation learning without negative samples for multimodal human action recognition [J]. Frontier in Neuroscience, 2023, 17: No.1225312.
|
14 |
XING M, FENG Z, SU Y, et al. Ventral & Dorsal Stream Theory based zero-shot action recognition [J]. Pattern Recognition, 2021, 116: No.107953.
|
15 |
QI C, FENG Z, XING M, et al. Energy-based temporal summarized attentive network for zero-shot action recognition [J]. IEEE Transactions on Multimedia, 2023, 25: 1940-1953.
|
16 |
LeCUN Y, CHOPRA S, HADSELL R, et al. A tutorial on energy-based learning [EB/OL]. [2023-10-05]. .
|
17 |
KAY W, CARREIRA J, SIMONYAN K, et al. The Kinetics human action video dataset [EB/OL]. [2023-09-10]. .
|
18 |
DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16 x16 words: Transformers for image recognition at scale [EB/OL]. [2023-10-02]. .
|
19 |
KUEHNE H, JHUANG H, GARROTE E, et al. HMDB: a large video database for human motion recognition [C]// Proceedings of the 2011 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2011: 2556-2563.
|
20 |
SOOMRO K, ZAMIR A R, SHAH M. UCF101: a dataset of 101 human actions classes from videos in the wild [EB/OL]. [2022-12-12]. .
|
21 |
MIKOLOV T, SUYSKEVER I, CHEN K, et al. Distributed representations of words and phrases and their compositionality [C]// Proceedings of the 26th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2013: 3111-3119.
|
22 |
AKATA Z, REED S, WALTER D, et al. Evaluation of output embeddings for fine-grained image classification [C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 2927-2936.
|
23 |
XU X, HOSPEDALES T M, GONG S. Multi-task zero-shot action recognition with prioritised data augmentation [C]// Proceedings of the 2016 European Conference on Computer Vision, LNCS 9906. Cham: Springer, 2016: 343-359.
|
24 |
QIN J, LIU L, SHAO L, et al. Zero-shot action recognition with error-correcting output codes [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 1042-1051.
|
25 |
WANG Q, CHEN K. Zero-shot visual recognition via bidirectional latent embedding [J]. International Journal of Computer Vision, 2017, 124(3): 356-383.
|
26 |
MISHRA A, VERMA V K, REDDY M S K, et al. A generative approach to zero-shot and few-shot action recognition [C]// Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2018: 372-380.
|
27 |
BISHAY M, ZOUMPOURLIS G, PATRAS I. TARN: temporal attentive relation network for few-shot and zero-shot action recognition [C]// Proceedings of the 2019 British Machine Vision Conference. Durham: BMVA Press, 2019: 1-14.
|
28 |
TIAN Y, HUANG Y, XU W, et al. Coupling Adversarial Graph Embedding for transductive zero-shot action recognition [J]. Neurocomputing, 2021, 452: 239-252.
|
29 |
MISHRA A, PANDEY A, MURTHY H A. Zero-shot learning for action recognition using synthesized features [J]. Neurocomputing, 2020, 390: 117-130.
|