《计算机应用》唯一官方网站 ›› 2025, Vol. 45 ›› Issue (2): 601-609.DOI: 10.11772/j.issn.1001-9081.2024030276
• 多媒体计算与计算机仿真 • 上一篇
收稿日期:
2024-03-18
修回日期:
2024-04-30
接受日期:
2024-05-06
发布日期:
2024-06-06
出版日期:
2025-02-10
通讯作者:
赵小乐
作者简介:
孟海腾(1999—),男,江苏徐州人,硕士研究生,CCF会员,主要研究方向:计算机视觉、图像处理基金资助:
Haiteng MENG, Xiaole ZHAO(), Tianrui LI
Received:
2024-03-18
Revised:
2024-04-30
Accepted:
2024-05-06
Online:
2024-06-06
Published:
2025-02-10
Contact:
Xiaole ZHAO
About author:
MENG Haiteng, born in 1999, M. S. candidate. His research interests include computer vision, image processing.Supported by:
摘要:
深度卷积神经网络(CNN)在图像超分辨率重建领域表现出卓越性能,然而现有的许多相关方法的模型参数量较多,无法应用至计算资源较低的设备。为缓解上述问题,提出一个轻量级的非对称信息蒸馏网络(AIDN)模型。首先,输入原始图像及其边缘图像以提取有效的特征信息;其次,设计一个非对称信息蒸馏块对提取到的特征进行非线性映射学习;再次,使用上采样模块重建多个残差图像后,将这些残差图像经过注意力机制融合成一个残差图像;最后,将融合的残差图像与输入图像的插值相加后得到超分图像。在Set14、Urban100和Manga109数据集上的实验结果表明,相较于空间自适应特征调制网络(SAFMN),AIDN模型的4倍超分峰值信噪比(PSNR)值分别提升了0.03 dB、0.14 dB和0.06 dB,说明了AIDN模型在模型参数量和模型性能之间取得了更好的平衡。
中图分类号:
孟海腾, 赵小乐, 李天瑞. 基于非对称信息蒸馏网络的轻量级图像超分辨重建[J]. 计算机应用, 2025, 45(2): 601-609.
Haiteng MENG, Xiaole ZHAO, Tianrui LI. Lightweight image super-resolution reconstruction based on asymmetric information distillation network[J]. Journal of Computer Applications, 2025, 45(2): 601-609.
模块名 | 输出特征大小 | 子模块名 | 子模块结构 |
---|---|---|---|
SFEM | 64×64 | Conv3 | 3×3,3 |
Conv3 | {3×3,26}×2 | ||
AIDB | 64×64 | HvConv | |
VhConv | |||
Conv1 | {1×1,26}×4 | ||
Conv1 | 1×1,52 | ||
IESA | 64×64 | Conv1 | 1×1,13 |
31×31 | Strided Conv | 3×3,13,s=2 | |
15×15 | Pooling | 2×2,s=2 | |
64×64 | DwConv3 | 3×3,13,g=13 | |
31×31 | DwConv3 | 3×3,13,g=13 | |
15×15 | DwConv3 | 3×3,13,g=13 | |
64×64 | Conv1 | 1×1,52 | |
UM | 64×64 | Conv3(U) | 3×3,3r2 |
Conv3 | 3×3,3 | ||
ASM | Conv1 | 1×1,24 | |
Conv1×3 | 1×3,24 | ||
Conv3×1 | 3×1,24 | ||
Conv1 | 1×1,12 |
表1 AIDN模型的详细实验参数
Tab. 1 Detailed experimental parameters of AIDN model
模块名 | 输出特征大小 | 子模块名 | 子模块结构 |
---|---|---|---|
SFEM | 64×64 | Conv3 | 3×3,3 |
Conv3 | {3×3,26}×2 | ||
AIDB | 64×64 | HvConv | |
VhConv | |||
Conv1 | {1×1,26}×4 | ||
Conv1 | 1×1,52 | ||
IESA | 64×64 | Conv1 | 1×1,13 |
31×31 | Strided Conv | 3×3,13,s=2 | |
15×15 | Pooling | 2×2,s=2 | |
64×64 | DwConv3 | 3×3,13,g=13 | |
31×31 | DwConv3 | 3×3,13,g=13 | |
15×15 | DwConv3 | 3×3,13,g=13 | |
64×64 | Conv1 | 1×1,52 | |
UM | 64×64 | Conv3(U) | 3×3,3r2 |
Conv3 | 3×3,3 | ||
ASM | Conv1 | 1×1,24 | |
Conv1×3 | 1×3,24 | ||
Conv3×1 | 3×1,24 | ||
Conv1 | 1×1,12 |
模型名 | 参数量/ | Set5 | Set14 | B100 | Urban100 | Manga109 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | ||
Bicubic | — | 33.66 | 0.929 9 | 30.24 | 0.868 8 | 29.56 | 0.843 1 | 26.88 | 0.840 3 | 30.80 | 0.933 9 |
SRCNN[ | 57 | 36.66 | 0.954 2 | 32.45 | 0.906 7 | 31.36 | 0.887 9 | 29.50 | 0.894 6 | 35.60 | 0.966 3 |
FSRCNN[ | 12 | 37.00 | 0.955 8 | 32.63 | 0.908 8 | 31.53 | 0.892 0 | 29.88 | 0.902 0 | 36.67 | 0.971 0 |
LapSRN[ | 813 | 37.52 | 0.959 1 | 33.08 | 0.913 0 | 31.08 | 0.895 0 | 30.42 | 0.910 1 | 37.27 | 0.974 0 |
MemNet[ | 677 | 37.78 | 0.959 7 | 33.28 | 0.914 2 | 32.08 | 0.897 8 | 31.31 | 0.919 5 | 37.72 | 0.974 0 |
IDN[ | 553 | 37.83 | 0.960 0 | 33.30 | 0.914 8 | 32.08 | 0.898 5 | 31.27 | 0.919 6 | 38.01 | 0.974 9 |
IMDN[ | 694 | 38.00 | 33.63 | 0.917 7 | 32.19 | 32.17 | 0.928 3 | 38.88 | 0.977 4 | ||
PAN[ | 261 | 38.00 | 0.918 1 | 0.899 7 | 32.01 | 38.70 | |||||
ShuffleMixer[ | 394 | 0.960 6 | 33.63 | 32.17 | 0.899 5 | 31.89 | 0.925 7 | 0.977 4 | |||
SAFMN[ | 228 | 38.00 | 33.54 | 0.917 7 | 32.16 | 0.899 5 | 31.84 | 0.925 6 | 38.71 | 0.977 1 | |
AIDN(本文) | 229 | 38.02 | 0.960 4 | 33.55 | 0.917 7 | 0.899 7 | 0.927 1 | 38.77 |
表2 不同超分网络在5个基准数据集上的2倍结果比较
Tab. 2 Comparison of 2× results of different super-resolution networks on 5 benchmark datasets
模型名 | 参数量/ | Set5 | Set14 | B100 | Urban100 | Manga109 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | ||
Bicubic | — | 33.66 | 0.929 9 | 30.24 | 0.868 8 | 29.56 | 0.843 1 | 26.88 | 0.840 3 | 30.80 | 0.933 9 |
SRCNN[ | 57 | 36.66 | 0.954 2 | 32.45 | 0.906 7 | 31.36 | 0.887 9 | 29.50 | 0.894 6 | 35.60 | 0.966 3 |
FSRCNN[ | 12 | 37.00 | 0.955 8 | 32.63 | 0.908 8 | 31.53 | 0.892 0 | 29.88 | 0.902 0 | 36.67 | 0.971 0 |
LapSRN[ | 813 | 37.52 | 0.959 1 | 33.08 | 0.913 0 | 31.08 | 0.895 0 | 30.42 | 0.910 1 | 37.27 | 0.974 0 |
MemNet[ | 677 | 37.78 | 0.959 7 | 33.28 | 0.914 2 | 32.08 | 0.897 8 | 31.31 | 0.919 5 | 37.72 | 0.974 0 |
IDN[ | 553 | 37.83 | 0.960 0 | 33.30 | 0.914 8 | 32.08 | 0.898 5 | 31.27 | 0.919 6 | 38.01 | 0.974 9 |
IMDN[ | 694 | 38.00 | 33.63 | 0.917 7 | 32.19 | 32.17 | 0.928 3 | 38.88 | 0.977 4 | ||
PAN[ | 261 | 38.00 | 0.918 1 | 0.899 7 | 32.01 | 38.70 | |||||
ShuffleMixer[ | 394 | 0.960 6 | 33.63 | 32.17 | 0.899 5 | 31.89 | 0.925 7 | 0.977 4 | |||
SAFMN[ | 228 | 38.00 | 33.54 | 0.917 7 | 32.16 | 0.899 5 | 31.84 | 0.925 6 | 38.71 | 0.977 1 | |
AIDN(本文) | 229 | 38.02 | 0.960 4 | 33.55 | 0.917 7 | 0.899 7 | 0.927 1 | 38.77 |
模型名 | 参数量/ | Set5 | Set14 | B100 | Urban100 | Manga109 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | ||
Bicubic | — | 30.39 | 0.868 2 | 27.55 | 0.774 2 | 27.21 | 0.738 5 | 24.46 | 0.734 9 | 26.95 | 0.855 6 |
SRCNN[ | 57 | 32.75 | 0.909 0 | 29.28 | 0.820 9 | 28.41 | 0.786 3 | 26.24 | 0.798 9 | 30.69 | 0.917 0 |
FSRCNN[ | 12 | 33.16 | 0.914 0 | 29.43 | 0.824 2 | 28.53 | 0.791 0 | 26.43 | 0.808 0 | 30.98 | 0.921 2 |
MemNet[ | 677 | 34.09 | 0.924 8 | 30.01 | 0.835 0 | 28.96 | 0.800 1 | 27.56 | 0.837 6 | 32.51 | 0.936 9 |
IDN[ | 553 | 34.11 | 0.925 3 | 29.99 | 0.835 4 | 28.95 | 0.801 3 | 27.42 | 0.835 9 | 32.71 | 0.938 1 |
IMDN[ | 703 | 34.36 | 0.927 0 | 30.32 | 0.841 7 | 0.804 6 | 27.17 | 33.61 | |||
PAN[ | 261 | 0.927 2 | 30.37 | 29.12 | 0.849 8 | 33.69 | 0.944 8 | ||||
ShuffleMixer[ | 415 | 0.927 2 | 30.37 | 29.12 | 0.849 8 | 33.69 | 0.944 8 | ||||
SAFMN[ | 233 | 34.34 | 0.936 7 | 30.33 | 0.841 8 | 29.08 | 0.804 8 | 27.95 | 0.847 4 | 33.52 | 0.943 7 |
AIDN(本文) | 257 | 34.42 | 0.842 4 | 29.12 | 0.805 2 | 28.16 | 0.852 4 | 0.844 9 |
表3 不同超分网络在5个基准数据集上的3倍结果比较
Tab. 3 Comparison of 3× results of different super-resolution networks on 5 benchmark datasets
模型名 | 参数量/ | Set5 | Set14 | B100 | Urban100 | Manga109 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | ||
Bicubic | — | 30.39 | 0.868 2 | 27.55 | 0.774 2 | 27.21 | 0.738 5 | 24.46 | 0.734 9 | 26.95 | 0.855 6 |
SRCNN[ | 57 | 32.75 | 0.909 0 | 29.28 | 0.820 9 | 28.41 | 0.786 3 | 26.24 | 0.798 9 | 30.69 | 0.917 0 |
FSRCNN[ | 12 | 33.16 | 0.914 0 | 29.43 | 0.824 2 | 28.53 | 0.791 0 | 26.43 | 0.808 0 | 30.98 | 0.921 2 |
MemNet[ | 677 | 34.09 | 0.924 8 | 30.01 | 0.835 0 | 28.96 | 0.800 1 | 27.56 | 0.837 6 | 32.51 | 0.936 9 |
IDN[ | 553 | 34.11 | 0.925 3 | 29.99 | 0.835 4 | 28.95 | 0.801 3 | 27.42 | 0.835 9 | 32.71 | 0.938 1 |
IMDN[ | 703 | 34.36 | 0.927 0 | 30.32 | 0.841 7 | 0.804 6 | 27.17 | 33.61 | |||
PAN[ | 261 | 0.927 2 | 30.37 | 29.12 | 0.849 8 | 33.69 | 0.944 8 | ||||
ShuffleMixer[ | 415 | 0.927 2 | 30.37 | 29.12 | 0.849 8 | 33.69 | 0.944 8 | ||||
SAFMN[ | 233 | 34.34 | 0.936 7 | 30.33 | 0.841 8 | 29.08 | 0.804 8 | 27.95 | 0.847 4 | 33.52 | 0.943 7 |
AIDN(本文) | 257 | 34.42 | 0.842 4 | 29.12 | 0.805 2 | 28.16 | 0.852 4 | 0.844 9 |
模型名 | 参数量/ | Set5 | Set14 | B100 | Urban100 | Manga109 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | ||
Bicubic | — | 28.42 | 0.810 4 | 26.00 | 0.702 7 | 25.96 | 0.667 5 | 23.14 | 0.657 7 | 24.89 | 0.786 6 |
SRCNN[ | 57 | 30.48 | 0.862 8 | 27.49 | 0.750 3 | 26.90 | 0.710 1 | 24.52 | 0.722 1 | 27.66 | 0.850 5 |
FSRCNN[ | 12 | 30.71 | 0.865 7 | 27.59 | 0.753 5 | 26.98 | 0.715 0 | 24.62 | 0.828 0 | 27.90 | 0.851 7 |
LapSRN[ | 813 | 31.54 | 0.885 0 | 28.19 | 0.772 0 | 27.32 | 0.728 0 | 25.21 | 0.756 0 | 29.09 | 0.884 5 |
MemNet[ | 677 | 31.74 | 0.889 3 | 28.26 | 0.772 3 | 27.40 | 0.728 1 | 25.50 | 0.763 0 | 29.42 | 0.894 2 |
IDN[ | 553 | 31.82 | 0.890 3 | 28.25 | 0.773 0 | 27.41 | 0.729 7 | 25.41 | 0.763 2 | 29.41 | 0.894 2 |
IMDN[ | 715 | 32.21 | 28.58 | 0.781 1 | 27.56 | 0.735 3 | 26.04 | 0.783 8 | 30.45 | 0.907 5 | |
PAN[ | 261 | 32.13 | 28.66 | 27.61 | 0.736 6 | 0.783 5 | 30.65 | 0.909 3 | |||
HPUN-S[ | 246 | 32.09 | 0.893 1 | 28.52 | 0.779 7 | 27.54 | 0.734 8 | 25.86 | 0.778 8 | 30.21 | 0.904 3 |
ShuffleMixer[ | 411 | 32.21 | 0.895 3 | 28.66 | 27.61 | 0.736 6 | 30.65 | 0.909 3 | |||
SAFMN[ | 240 | 28.60 | 0.781 3 | 25.97 | 0.780 9 | 30.43 | 0.909 3 | ||||
AIDN(本文) | 229 | 0.894 6 | 0.787 1 | 26.11 |
表4 不同超分网络在5个基准数据集上的4倍结果比较
Tab. 4 Comparison of 4× results of different super-resolution networks on 5 benchmark datasets
模型名 | 参数量/ | Set5 | Set14 | B100 | Urban100 | Manga109 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | ||
Bicubic | — | 28.42 | 0.810 4 | 26.00 | 0.702 7 | 25.96 | 0.667 5 | 23.14 | 0.657 7 | 24.89 | 0.786 6 |
SRCNN[ | 57 | 30.48 | 0.862 8 | 27.49 | 0.750 3 | 26.90 | 0.710 1 | 24.52 | 0.722 1 | 27.66 | 0.850 5 |
FSRCNN[ | 12 | 30.71 | 0.865 7 | 27.59 | 0.753 5 | 26.98 | 0.715 0 | 24.62 | 0.828 0 | 27.90 | 0.851 7 |
LapSRN[ | 813 | 31.54 | 0.885 0 | 28.19 | 0.772 0 | 27.32 | 0.728 0 | 25.21 | 0.756 0 | 29.09 | 0.884 5 |
MemNet[ | 677 | 31.74 | 0.889 3 | 28.26 | 0.772 3 | 27.40 | 0.728 1 | 25.50 | 0.763 0 | 29.42 | 0.894 2 |
IDN[ | 553 | 31.82 | 0.890 3 | 28.25 | 0.773 0 | 27.41 | 0.729 7 | 25.41 | 0.763 2 | 29.41 | 0.894 2 |
IMDN[ | 715 | 32.21 | 28.58 | 0.781 1 | 27.56 | 0.735 3 | 26.04 | 0.783 8 | 30.45 | 0.907 5 | |
PAN[ | 261 | 32.13 | 28.66 | 27.61 | 0.736 6 | 0.783 5 | 30.65 | 0.909 3 | |||
HPUN-S[ | 246 | 32.09 | 0.893 1 | 28.52 | 0.779 7 | 27.54 | 0.734 8 | 25.86 | 0.778 8 | 30.21 | 0.904 3 |
ShuffleMixer[ | 411 | 32.21 | 0.895 3 | 28.66 | 27.61 | 0.736 6 | 30.65 | 0.909 3 | |||
SAFMN[ | 240 | 28.60 | 0.781 3 | 25.97 | 0.780 9 | 30.43 | 0.909 3 | ||||
AIDN(本文) | 229 | 0.894 6 | 0.787 1 | 26.11 |
实验 序号 | 实验设置 | 模型 参数量 | PSNR/dB | |||
---|---|---|---|---|---|---|
ESA | IESA | edge | ASM | |||
1 | √ | × | × | × | 237 491 | 31.51 |
2 | × | √ | × | × | 225 323 | 31.55 |
3 | × | √ | √ | × | 225 404 | 31.56 |
4 | × | √ | × | √ | 229 439 | 32.10 |
5 | × | √ | √ | √ | 229 520 | 32.11 |
表5 AIDN在Set5数据集上的4倍超分消融实验结果
Tab. 5 Experimental results of 4x super-resolution ablation of AIDN on Set5 dataset
实验 序号 | 实验设置 | 模型 参数量 | PSNR/dB | |||
---|---|---|---|---|---|---|
ESA | IESA | edge | ASM | |||
1 | √ | × | × | × | 237 491 | 31.51 |
2 | × | √ | × | × | 225 323 | 31.55 |
3 | × | √ | √ | × | 225 404 | 31.56 |
4 | × | √ | × | √ | 229 439 | 32.10 |
5 | × | √ | √ | √ | 229 520 | 32.11 |
1 | DONG C, LOY C C, HE K, et al. Learning a deep convolutional network for image super-resolution[C]// Proceedings of the 2014 European Conference on Computer Vision, LNCS 8692. Cham: Springer, 2014: 184-199. |
2 | KIM J, LEE J K, LEE K M. Accurate image super-resolution using very deep convolutional networks[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 1646-1654. |
3 | KIM J, LEE J K, LEE K M. Deeply-recursive convolutional network for image super-resolution[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 1637-1645. |
4 | ZHENG H, WANG X, GAO X. Fast and accurate single image super-resolution via information distillation network[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 723-731. |
5 | SZEGEDY C, VANHOUCKE V, LOFFE S, et al. Rethinking the inception architecture for computer vision[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 2818-2826. |
6 | TIAN C, XU Y, ZUO W, et al. Asymmetric CNN for image super-resolution[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52(6): 3718-3730. |
7 | ZONG Z, ZHA L, JIANG J, et al. Asymmetric information distillation network for lightweight super resolution[C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2022: 1248-1257. |
8 | DONG C, LOY C C, TANG X. Accelerating the super-resolution convolutional neural network[C]// Proceedings of the 2016 European Conference on Computer Vision, LNCS 9906. Cham: Springer, 2016: 391-407. |
9 | LIM B, SON S, KIM H, et al. Enhanced deep residual networks for single image super-resolution[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2017: 1132-1140. |
10 | ZHANG Y, LI K, LI K, et al. Image super-resolution using very deep residual channel attention networks[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11211. Cham: Springer, 2018: 294-310. |
11 | DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: transformers for image recognition at scale[EB/OL]. [2024-01-13].. |
12 | LIANG J, CAO J, SUN G, et al. SwinIR: image restoration using Swin Transformer[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision Workshops. Piscataway: IEEE, 2021: 1833-1844. |
13 | ZHANG X, ZENG H, GUO S, et al. Efficient long-range attention network for image super resolution[C]// Proceedings of the 2022 European Conference on Computer Vision, LNCS 13677. Cham: Springer, 2022: 649-667. |
14 | ZHOU Y, LI Z, GUO C L, et al. SRFormer: permuted self-attention for single image super-resolution[C]// Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2023: 12734-12745. |
15 | ZHENG H, GAO X, YANG Y, et al. Lightweight image super-resolution with information multi-distillation network[C]// Proceedings of the 27th ACM International Conference on Multimedia. New York: ACM, 2019: 2024-2032. |
16 | LIU J, TANG J, WU G. Residual feature distillation network for lightweight image super-resolution[C]// Proceedings of the 2020 European Conference on Computer Vision Workshops, LNCS 12537. Cham: Springer, 2020: 41-55. |
17 | LAI W S, HUANG J B, AHUJA N, et al. Deep Laplacian pyramid networks for fast and accurate super-resolution[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 5835-5843. |
18 | LAI W S, HUANG J B, AHUJA N, et al. Fast and accurate image super-resolution with deep Laplacian pyramid networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(11): 2599-2613. |
19 | ZHAO H, KONG X, HE J, et al. Efficient image super-resolution using pixel attention[C]// Proceedings of the 2020 European Conference on Computer Vision Workshops, LNCS 12537. Cham: Springer, 2020: 56-72. |
20 | LI Z, LIU Y, CHEN X, et al. Blueprint separable residual network for efficient image super-resolution[C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2022: 832-842. |
21 | SUN L, DONG J, TANG J, et al. Spatially-adaptive feature modulation for efficient image super-resolution[C]// Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2023: 13144-13153. |
22 | FANG J, LIN H, CHEN X, et al. A hybrid network of CNN and Transformer for lightweight image super-resolution[C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2022: 1102-1111. |
23 | ZHANG A, REN W, LIU Y, et al. Lightweight image super-resolution with super-pixel token interaction[C]// Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2023: 12682-12691. |
24 | HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141. |
25 | LIU J, ZHANG W, TANG Y, et al. Residual feature aggregation network for image super-resolution[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 2356-2365. |
26 | KONG F, LI M, LIU S, et al. Residual local feature network for efficient super-resolution[C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2022: 765-775. |
27 | TIMOFTE R, AGUSTSSON E, VAN GOOL L, et al. NTIRE 2017 challenge on single image super-resolution: methods and results[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2017: 1110-1121. |
28 | BEVILACQUA M, ROUMY A, GUILLEMOT C, et al. Low-complexity single-image super-resolution based on nonnegative neighbor embedding[C]// Proceedings of the 2012 British Machine Vision Conference. Durham: BMVA Press, 2012: 1-10. |
29 | ZEYDE R, ELAD M, PROTTER M. On single image scale-up using sparse-representations[C]// Proceedings of the 2010 International Conference on Curves and Surfaces, LNCS 6920. Berlin: Springer, 2012: 711-730. |
30 | MARTIN D, FOWLKES C, TAL D, et al. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[C]// Proceedings of the 8th IEEE International Conference on Computer Vision. Piscataway: IEEE, 2001: 416-423. |
31 | HUANG J B, SINGH A, AHUJA N. Single image super-resolution from transformed self-exemplars[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 5197-5206. |
32 | MATSUI Y, ITO K, ARAMAKI Y, et al. Sketch-based manga retrieval using manga109 dataset[J]. Multimedia Tools and Applications, 2017, 76(20): 21811-21838. |
33 | TAI Y, YANG J, LIU X, et al. MemNet: a persistent memory network for image restoration[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 4549-4557. |
34 | SUN L, PAN J, TANG J. ShuffleMixer: an efficient ConvNet for image super-resolution[C]// Proceedings of the 36th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2022: 17314-17326. |
35 | SUN B, ZHANG Y, JIANG S, et al. Hybrid pixel-unshuffled network for lightweight image super-resolution[C]// Proceedings of the 2023 AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2023: 2375-2383. |
36 | AHN N, KANG B, SOHN K A. Fast, accurate, and lightweight super-resolution with cascading residual network[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11214. Cham: Springer, 2018: 256-272. |
[1] | 王地欣, 王佳昊, 李敏, 陈浩, 胡光耀, 龚宇. 面向水声通信网络的异常攻击检测[J]. 《计算机应用》唯一官方网站, 2025, 45(2): 526-533. |
[2] | 蔡启健, 谭伟. 语义图增强的多模态推荐算法[J]. 《计算机应用》唯一官方网站, 2025, 45(2): 421-427. |
[3] | 王丽芳, 吴荆双, 尹鹏亮, 胡立华. 基于注意力机制和能量函数的动作识别算法[J]. 《计算机应用》唯一官方网站, 2025, 45(1): 234-239. |
[4] | 宋鹏程, 郭立君, 张荣. 利用局部-全局时间依赖的弱监督视频异常检测[J]. 《计算机应用》唯一官方网站, 2025, 45(1): 240-246. |
[5] | 徐杰, 钟勇, 王阳, 张昌福, 杨观赐. 基于上下文通道注意力机制的人脸属性估计与表情识别[J]. 《计算机应用》唯一官方网站, 2025, 45(1): 253-260. |
[6] | 陈俊颖, 郭士杰, 陈玲玲. 基于解耦注意力与幻影卷积的轻量级人体姿态估计[J]. 《计算机应用》唯一官方网站, 2025, 45(1): 223-233. |
[7] | 张嘉琳, 任庆桦, 毛启容. 利用全局-局部特征依赖的反欺骗说话人验证系统[J]. 《计算机应用》唯一官方网站, 2025, 45(1): 308-317. |
[8] | 黄颖, 李昌盛, 彭慧, 刘苏. 用于动态场景高动态范围成像的局部熵引导的双分支网络[J]. 《计算机应用》唯一官方网站, 2025, 45(1): 204-213. |
[9] | 李力铤, 华蓓, 贺若舟, 徐况. 基于解耦注意力机制的多变量时序预测模型[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2732-2738. |
[10] | 秦璟, 秦志光, 李发礼, 彭悦恒. 基于概率稀疏自注意力神经网络的重性抑郁疾患诊断[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2970-2974. |
[11] | 赵志强, 马培红, 黑新宏. 基于双重注意力机制的人群计数方法[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2886-2892. |
[12] | 薛凯鹏, 徐涛, 廖春节. 融合自监督和多层交叉注意力的多模态情感分析网络[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2387-2392. |
[13] | 汪雨晴, 朱广丽, 段文杰, 李书羽, 周若彤. 基于交互注意力机制的心理咨询文本情感分类模型[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2393-2399. |
[14] | 高鹏淇, 黄鹤鸣, 樊永红. 融合坐标与多头注意力机制的交互语音情感识别[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2400-2406. |
[15] | 李钟华, 白云起, 王雪津, 黄雷雷, 林初俊, 廖诗宇. 基于图像增强的低照度人脸检测[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2588-2594. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||