《计算机应用》唯一官方网站 ›› 2024, Vol. 44 ›› Issue (8): 2536-2543.DOI: 10.11772/j.issn.1001-9081.2023081184
收稿日期:
2023-09-03
修回日期:
2023-10-08
接受日期:
2023-10-17
发布日期:
2024-08-22
出版日期:
2024-08-10
通讯作者:
郑奇斌
作者简介:
刘艺(1990—),男(回族),安徽蚌埠人,助理研究员,博士,主要研究方向:智能数据工程、演化算法基金资助:
Yi LIU, Guoli YANG, Qibin ZHENG(), Xiang LI, Yangsen ZHOU, Depeng CHEN
Received:
2023-09-03
Revised:
2023-10-08
Accepted:
2023-10-17
Online:
2024-08-22
Published:
2024-08-10
Contact:
Qibin ZHENG
About author:
LIU Yi, born in 1990, Ph. D., assistant research fellow. His research interests include intelligent data engineering, evolutionary algorithm.Supported by:
摘要:
传感器是无人系统智能化行动的基础,而通过融合多传感器的数据能增强无人系统的智能感知和自主决策能力,提升无人系统的可靠性和鲁棒性。无人系统的数据融合面临传感器类型多样、数据格式异构、数据融合分析的实时性强,以及算法模型种类复杂、更新演化快等挑战,传统定制化开发前端融合模型和基于后端融合平台的方法难以适用。因此,提出一种面向数据融合的流水线平台,以支持数据自动转换、算法灵活组合、模型高可配置、功能快速迭代,且能面向任务,动态、快速构建数据融合模型并提供信息服务。在剖析无人系统数据融合流程和技术体系的基础上,设计流水线框架及其关键功能构件,分析亟待突破的关键技术,给出框架的运行方式和实际案例,探讨未来的发展方向。
中图分类号:
刘艺, 杨国利, 郑奇斌, 李翔, 周杨森, 陈德鹏. 无人系统数据融合流水线架构设计[J]. 计算机应用, 2024, 44(8): 2536-2543.
Yi LIU, Guoli YANG, Qibin ZHENG, Xiang LI, Yangsen ZHOU, Depeng CHEN. Architecture design of data fusion pipeline for unmanned systems[J]. Journal of Computer Applications, 2024, 44(8): 2536-2543.
1 | 刘艺,李蒙蒙,郑奇斌,等. 视频目标跟踪算法综述[J]. 计算机科学与探索, 2022, 16(7): 1504-1515. |
LIU Y, LI M M, ZHENG Q B, et al. Survey on video object tracking algorithms[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1504-1515. | |
2 | 尹作重,刘继红,王佃鹏,等. 基于微服务的多机器人资源智能云服务平台架构[J]. 计算机集成制造系统, 2022, 28(7): 2102-2111. |
YIN Z Z, LIU J H, WANG D P, et al. Multi-robot resource intelligent cloud service platform based on microservice[J]. Computer Integrated Manufacturing Systems, 2022, 28(7): 2102-2111. | |
3 | VÉLEZ-NICOLÁS M, GARCÍA-LÓPEZ S, BARBERO L, et al. Applications of Unmanned Aerial Systems (UASs) in hydrology: a review[J]. Remote Sensing, 2021, 13(7): No.1359. |
4 | RAHMAN M F F, FAN S, ZHANG Y, et al. A comparative study on application of unmanned aerial vehicle systems in agriculture[J]. Agriculture, 2021, 11(1): No.22. |
5 | RENAULT A. A model for assessing UAV system architectures[J]. Procedia Computer Science, 2015, 61: 160-167. |
6 | QIU S, ZHAO H, JIANG N, et al. Multi-sensor information fusion based on machine learning for real applications in human activity recognition: state-of-the-art and research challenges[J]. Information Fusion, 2022, 80(4): 241-265. |
7 | LIU W, ZHANG T, HUANG S, et al. A hybrid optimization framework for UAV reconnaissance mission planning[J]. Computers and Industrial Engineering, 2022, 173: No.108653. |
8 | WAN L, LIU R, SUN L, et al. UAV swarm based radar signal sorting via multi-source data fusion: a deep transfer learning framework[J]. Information Fusion, 2022, 78: 90-101. |
9 | CASTANEDO F. A review of data fusion techniques[J]. The Scientific World Journal, 2013, 2013: No.704504. |
10 | DIEZ-OLIVAN A, DER SER J, GALAR D, et al. Data fusion and machine learning for industrial prognosis: trends and perspectives towards Industry 4.0[J]. Information Fusion, 2019, 50: 92-111. |
11 | LUO R C, KAY M G. Multisensor integration and fusion in intelligent systems[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1989, 19(5): 901-931. |
12 | AYED S B, TRICHILI H M, ALIMI A. Data fusion architectures: a survey and comparison[C]// Proceedings of the 15th International Conference on Intelligent Systems Design and Applications. Piscataway: IEEE, 2015: 277-282. |
13 | DASARATHY B V. Sensor fusion potential exploitation-innovative architectures and illustrative applications[J]. Proceedings of the IEEE, 1997, 85(1): 24-38. |
14 | BLASCH E, STEINBERG A, DAS S, et al. Revisiting the JDL model for information exploitation[C]// Proceedings of the 16th International Conference on Information Fusion. Piscataway: IEEE, 2013: 129-136. |
15 | ULLAH I, YOUN H Y. Intelligent data fusion for smart IoT environment: a survey[J]. Wireless Personal Communications, 2020, 114(1): 409-430. |
16 | ARAGÓN M E, CARLOS M R, GURROLA L C G, et al. A machine learning pipeline to automatically identify and classify roadway surface disruptions[C]// Proceedings of the 16th Mexican International Conference on Computer Science. New York: ACM, 2016: No.3. |
17 | ZUO S, LI J, LI Y, et al. Data processing pipeline for Tianlai experiment[J]. Astronomy and Computing, 2021, 34: No.100439. |
18 | DING X, CHEN L, GAO Y, et al. UlTraMan: a unified platform for big trajectory data management and analytics[J]. Proceedings of the VLDB Endowment, 2018, 11(7): 787-799. |
19 | POOJARA S R, DEHURY C K, DEHURY P, et al. Serverless data pipeline approaches for IoT data in fog and cloud computing[J]. Future Generation Computer Systems, 2022, 130: 91-105. |
20 | REZIG E K, BRAHMAROUTU A, TATBUL N, et al. Debugging large-scale data science pipelines using dagger[J]. Proceedings of the VLDB Endowment, 2020, 13(12): 2993-2996. |
21 | PEREIRA A, PROENÇA A. HEP-Frame: improving the efficiency of pipelined data transformation & filtering for scientific analyses[J]. Computer Physics Communications, 2021, 263: No.107844. |
22 | MISALE C, DROCCO M, TREMBLAY G, et al. PiCo: high-performance data analytics pipelines in modern C++[J]. Future Generation Computer Systems, 2018, 87: 392-403. |
23 | YANG C, FAN J, WU Z, et al. AutoML pipeline selection: efficiently navigating the combinatorial space[C]// Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2020: 1446-1456. |
24 | DE PRADO M, SU J, SAEED R, et al. Bonseyes AI Pipeline — bringing AI to you: end-to-end integration of data, algorithms, and deployment tools[J]. ACM Transactions on Internet of Things, 2020, 1(4): No.26. |
25 | FROST R, PAUL D, LI F. AI Pro: data processing framework for AI Models[C]// Proceedings of the IEEE 35th International Conference on Data Engineering. Piscataway: IEEE, 2019: 1980-1983. |
26 | REZIG E K, CAO L, STONEBRAKER M, et al. Data Civilizer 2.0: a holistic framework for data preparation and analytics[J]. Proceedings of the VLDB Endowment, 2019, 12(12): 1954-1957. |
27 | OLEGHE O, SALONITIS K. A framework for designing data pipelines for manufacturing systems[J]. Procedia CIRP, 2020, 93: 724-729. |
28 | PERVAIZ F, VASHISTHA A, ANDERSON R. Examining the challenges in development data pipeline [C]// Proceedings of the 2nd ACM SIGCAS Conference on Computing and Sustainable Societies. New York: ACM, 2019: 13-21. |
29 | ALLA S, ADARI S K. Introduction to MLFlow[M]// Beginning MLOps with MLFlow: Deploy Models in AWS SageMaker, Google Cloud, and Microsoft Azure. Berkeley: Apress, 2021: 125-227. |
30 | ZHAO J, ZHANG X, YAN J, et al. A wheat spike detection method in UAV images based on improved YOLOv5[J]. Remote Sensing, 2021, 13(16): No.3095. |
31 | LI Y, YU L, LIU J, et al. NetDPO: (delta, gamma)-approximate pattern matching with gap constraints under one-off condition[J]. Applied Intelligence, 2022, 52(11): 12155-12174. |
32 | 丁玥,王涓,卢卫,等. 面向多源关系数据的融合[J]. 中国科学:信息科学, 2020, 50(5): 649-661. |
DING Y, WANG J, LU W, et al. Multi-source relational data fusion[J]. SCIENTIA SINICA Informationis, 2020, 50(5): 649-661. | |
33 | NAFA Y, CHEN Q, CHEN Z, et al. Active deep learning on entity resolution by risk sampling[J]. Knowledge-Based Systems, 2022, 236: No.107729. |
34 | 谭明超,刁兴春,曹建军. 实体分辨研究综述[J]. 计算机科学, 2014, 41(4): 9-12, 20. |
TAN M C, DIAO X C, CAO J J. Survey on entity resolution[J]. Computer Science, 2014, 41(4): 9-12, 20. | |
35 | 曹建军,常宸,陶嘉庆, 等. 多源文本数据真值发现方法[J]. 国防科技大学学报, 2022, 44(4): 172-179. |
CAO J J, CHANG C, TAO J Q, et al. Truth discovery method for multi-source text data[J]. Journal of National University of Defense Technology, 2022, 44(4): 172-179. | |
36 | YIN L, LUO J, LI K. An optimal image storage strategy for container-based edge computing in smart factory[J]. IEEE Internet of Things Journal, 2023, 10(8): 7204-7214. |
37 | DUDCZYK J, CZYBA R, SKRZYPCZYK K. Multi-sensory data fusion in terms of UAV detection in 3D space[J]. Sensors, 2022, 22(12): No.4323. |
38 | GUPTA A, FERNANDO X. Simultaneous Localization And Mapping (SLAM) and data fusion in unmanned aerial vehicles: recent advances and challenges[J]. Drones, 2022, 6(4): No.85. |
39 | LIN C, CHENG Y, WANG X. A convolutional neural network particle filter for UUV target state estimation[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: No.2508412. |
40 | LIU W, LIU Y, BUCKNALL R. Filtering based multi-sensor data fusion algorithm for a reliable unmanned surface vehicle navigation[J]. Journal of Marine Engineering and Technology, 2023, 22(2): 67-83. |
41 | 张卫民,刘灿灿,骆志刚. 科学工作流技术研究综述[J]. 国防科技大学学报, 2011, 33(3): 56-65. |
ZHANG W M, LIU C C, LUO Z G. A review on scientific workflows[J]. Journal of National University of Defense Technology, 2011, 33(3): 56-65. | |
42 | 文一凭,侯俊杰,谭铮,等. 面向交互式建模的科学工作流活动推荐方法[J]. 计算机集成制造系统, 2022, 28(10): 3115-3121. |
WEN Y P, HOU J J, TAN Z, et al. Scientific workflow activity recommendation for interactive modeling[J]. Computer Integrated Manufacturing Systems, 2022, 28(10): 3115-3121. | |
43 | TSOUTSA P, FITSILIS P, ANTHOPOULOS L, et al. Nexus services in smart city ecosystems[J]. Journal of the Knowledge Economy, 2021, 12: 431-451. |
44 | 李庚松,刘艺,秦伟, 等. 面向算法选择的元学习研究综述[J]. 计算机科学与探索, 2023, 17(1): 88-107. |
LI G S, LIU Y, QIN W, et al. Survey on meta-learning research of algorithm selection[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(1): 88-107. | |
45 | 李庚松,刘艺,郑奇斌,等. 基于多目标混合蚁狮优化的算法选择方法[J]. 计算机研究与发展, 2023, 60(7): 1533-1550. |
LI G S, LIU Y, ZHENG Q B, et al. Algorithm selection method based on multi-objective hybrid ant lion optimizer[J]. Journal of Computer Research and Development, 2023, 60(7): 1533-1550. | |
46 | KERSCHKE P, HOOS H H, NEUMANN F, et al. Automated algorithm selection: survey and perspectives[J]. Evolutionary Computation, 2019, 27(1): 3-45. |
47 | RAUT A, SHIVHARE A, CHAURASIYA V K, et al. AEDS-IoT: adaptive clustering-based event detection scheme for IoT data streams[J]. Internet of Things, 2023, 22: No.100704. |
48 | 李于锋, 莫则尧, 肖永浩,等. 超算环境科学工作流应用的容错[J]. 国防科技大学学报, 2020, 42(6): 82-89. |
LI Y F, MO Z Y, XIAO Y H, et al. Fault tolerance in HPC scientific workflow application[J]. Journal of National University of Defense Technology, 2020, 42(6): 82-89. | |
49 | SOLÀ J. Quaternion kinematics for the error-state Kalman filter[EB/OL]. (2017-11-03) [2023-07-08].. |
[1] | 罗玮, 刘金全, 张铮. 融合秘密分享技术的双重纵向联邦学习框架[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1872-1879. |
[2] | 刘祥, 华蓓, 林飞, 魏宏原. 面向深度学习应用的组件式开发框架的设计实现[J]. 《计算机应用》唯一官方网站, 2024, 44(2): 526-535. |
[3] | 任秀丽, 张雷. 基于实用拜占庭容错的改进的多主节点共识机制[J]. 《计算机应用》唯一官方网站, 2022, 42(5): 1500-1507. |
[4] | 徐海文, 史家财, 汪腾. 基于深度全连接神经网络的离港航班延误预测模型[J]. 《计算机应用》唯一官方网站, 2022, 42(10): 3283-3291. |
[5] | 黄程程, 董霄霄, 李钊. 基于二维Winograd算法的深流水线5×5卷积方法[J]. 计算机应用, 2021, 41(8): 2258-2264. |
[6] | 屈景怡, 曹磊, 陈敏, 董樑, 曹烨琇. 基于团簇随机连接的CliqueNet航班延误预测模型[J]. 计算机应用, 2020, 40(8): 2420-2427. |
[7] | 朱小杰, 赵子豪, 杜一. 模型驱动的大数据流水线框架PiFlow[J]. 计算机应用, 2020, 40(6): 1638-1647. |
[8] | 林政, 吕霞付. 基于改进模糊算法的水面无人艇自主避障[J]. 计算机应用, 2019, 39(9): 2523-2528. |
[9] | 黄丰雨, 吴业福, 陈镜任, 吴冰. 基于区域道路实况数据的交通行为谱分析方法[J]. 计算机应用, 2019, 39(3): 907-912. |
[10] | 丁景全, 马博, 李晓. 基于融合时空数据的车辆加油行为多视图深度异常检测框架[J]. 计算机应用, 2019, 39(11): 3370-3375. |
[11] | 邱津怡, 罗俊, 李秀, 贾伟, 倪福川, 冯慧. 基于卷积神经网络的多尺度葡萄图像识别方法[J]. 计算机应用, 2019, 39(10): 2930-2936. |
[12] | 吴仁彪, 李佳怡, 屈景怡. 基于双通道卷积神经网络的航班延误预测模型[J]. 计算机应用, 2018, 38(7): 2100-2106. |
[13] | 徐爽, 张谦, 李琰, 刘嘉勇. 基于距离类别的多源兴趣点融合算法[J]. 计算机应用, 2018, 38(5): 1334-1338. |
[14] | 屈立成, 高芬芬, 柏超, 李萌萌, 赵明. 雷达引导的视频联动监控模型及算法[J]. 计算机应用, 2018, 38(12): 3625-3630. |
[15] | 任晓旭, 吕良福, 崔广泰. 耦合图像间的数据融合算法[J]. 计算机应用, 2018, 38(10): 2862-2868. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||