[1] 晁无疾. 调整提高转型升级促进我国葡萄产业稳步发展[J]. 中国果菜, 2015(9):12-14. (CHAO W J. Adjustment, improvement, transformation and upgrading to promote the steady development of China's grape industry[J]. China Fruit Vegetable, 2015(9):12-14.) [2] ZHAO B, FENG J, WU X, et al. A Survey on deep learning-based fine-grained object classification and semantic segmentation[J]. International Journal of Automation and Computing, 2017, 14(2):119-135. [3] LUO L, TANG Y, ZOU X, et al. Vision-based extraction of spatial information in grape clusters for harvesting robots[J]. Biosystems Engineering, 2016, 151:90-104. [4] FAN J, GAO Y, LUO H. Multi-level annotation of natural scenes using dominant image components and semantic concepts[C]//Proceedings of the 12th Annual ACM International Conference on Multimedia. New York:ACM, 2004:540-547. [5] NIXON M S, AGUADO A S. 特征提取与图像处理[M]. 李实英, 杨高波, 译.北京:电子工业出版社, 2010:147-289. (NIXON M S, AGUADO A S. Feature Extraction and Image Processing[M]. LI S Y, YANG G B, translated. Beijing:Publishing House of Electronics Industry, 2010:147-289.) [6] HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7):1527-1554. [7] YU C, WANG J, PENG C, et al. Learning a discriminative feature network for semantic segmentation[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2018:1857-1866. [8] SCHUSTER M, PALIWAL K K. Bidirectional recurrent neural networks[J]. IEEE Transactions on Signal Processing, 1997, 45(11):2673-2681. [9] CARNEIRO G, VASCONCELOS N. Formulating semantic image annotation as a supervised learning problem[C]//Proceedings of the 2005 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2005:163-168. [10] LeCUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11):2278-2324. [11] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. La Jolla, CA:Neural Information Processing Systems Foundation, 2012:1097-1105. [12] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL].[2019-02-10]. https://arxiv.org/pdf/1409.1556.pdf. [13] SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Patten Recognition. Piscataway:IEEE, 2015:1-9. [14] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2016:770-778. [15] SZEGEDY C, IOFFE S, van HOUCKE V, et al. Inception-V4, inception-ResNet and the impact of residual connections on learning[C]//Proceedings of the 201631st AAAI Conference on Artificial Intelligence. Pola Alto, CA:AAAI, 2016:4278-4284. [16] GEHLER P, NOWOZIN S. On feature combination for multiclass object classification[C]//Proceedings of the 12th IEEE International Conference on Computer Vision. Piscataway:IEEE, 2009:221-228. [17] JARRETT K, KAVUKCUOGLU K, RANZATO M, et al. What is the best multi-stage architecture for object recognition?[C]//Proceedings of the 12th IEEE International Conference on Computer Vision. Piscataway:IEEE, 2009:2146-2153. [18] CHEN P H, LIN C J, SCHOLKOPF, BERNHARD. A tutorial on ν-support vector machines[J]. Applied Stochastic Models in Business and Industry, 2005, 21(2):111-136. [19] WEISS K, KHOSHGOFTAAR T M, WANG D D. A survey of transfer learning[J]. Journal of Big Data, 2016, 3:9. [20] WOLD S. Principal component analysis[J]. Chemometrics & Intelligent Laboratory Systems, 1987, 2(1):37-52. [21] SZEGEDY C, van HOUCKE V, IOFFE S, et al. Rethinking the Inception architecture for computer vision[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2016:2818-2826. [22] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553):436-444. [23] IOFFE S, SZEGEDY C. Batch normalization:accelerating deep network training by reducing internal covariate shift[EB/OL].[2019-01-10]. https://arxiv.org/pdf/1502.03167.pdf. |