1 宋杰,孙宗哲,毛克明,等.MapReduce大数据处理平台与算法研究进展[J].软件学报,2017,28(3):514-543. SONGJ, SUNZ Z, MAOK M, et al. Research advance on MapReduce based big data processing platforms and algorithms [J]. Journal of Software, 2017, 28(3):514-543. 2 宫学庆,金澈清,王晓玲,等.数据密集型科学与工程:需求和挑战[J].计算机学报,2012,35(8):1563-1578. GONGX Q, JINC Q, WANGX L, et al. Data-intensive science and engineering: requirements and challenges [J]. Chinese Journal of Computers, 2012, 35(8): 1563-1578. 3 MANYIKAJ, CHUIM, BROWNB, et al. Big Data: The Next Frontier for Innovation, Competition, and Productivity [M]. Hawthorn: McKinsey Global Institute, 2011:1-13. 4 JINX, WAH B W, CHENGX, et al. Significance and challenges of big data research [J]. Big Data Research, 2015, 2(2): 59-64. 5 CHENH, CHIANGR H L, STOREYV C. Business intelligence and analytics: from big data to big impact [J]. MIS Quarterly, 2012, 36(4):1165-1188. 6 沈志宏,姚畅,侯艳飞,等.关联大数据管理技术:挑战、对策与实践[J].数据分析与知识发现,2018,2(1):9-20. SHENZ H, YAOC, HOUY F, et al. Big linked data management: challenges, solutions and practices [J]. Data Analysis and Knowledge Discovery, 2018, 2(1): 9-20. 7 KLEPPEA G, WARMERJ, BASTW. MDA Explained: The Model Driven Architecture: Practice and Promise [M]. Boston: Addison-Wesley Professional, 2003: 1-192. 8 BRAMBILLAM, CABOTJ, WIMMERM, et al. Model-Driven Software Engineering in Practice [M]. 2nd ed. San Rafael: Morgan & Claypool Publishers, 2017: 1-207. 9 WHITTLEJ, HUTCHINSONJ, ROUNCEFIELDM. The state of practice in model-driven engineering [J]. IEEE Software, 2014, 31(3): 79-85. 10 VANDERDONCKTJ, LIMBOURGQ, MICHOTTEB, et al. USIXML: a user interface description language supporting multiple levels of independence [EB/OL]. [2019-01-10]. https://www.w3.org/2004/02/mmi-workshop/vanderdonckt-louvain.pdf. 11 杜一,邓昌智,田丰,等.一种可扩展的用户界面描述语言[J].软件学报,2013,24(5):1127-1142. DUY, DENGC Z, TIANF, et al. Extensible user interface description language [J]. Journal of Software, 2013, 24(5): 1127-1142. 12 PUERTAA, EISENSTEINJ. Towards a general computational framework for model-based interface development systems [C]// Proceedings of the 4th International Conference on Intelligent User Interfaces. New York: ACM, 1999: 171-178. 13 杜一,郭旦怀,陈昕,等.一种模型驱动的可视化生成系统.软件学报,2016,27(5):1199-1211.(DU Y, GUO D H, CHEN X,et al. Model-driven visualization generation system [J]. Journal of Software, 2016,27(5): 1199-1211.) 14 DEANJ, GHEMAWZATS. MapReduce: simplified data processing on large clusters [J]. Communications of the ACM, 2008, 51(1): 107-113. 15 ZAHARIAM, CHOWDHURYM, FRANKLINM J, et al. Spark: cluster computing with working sets [C]// Proceedings of the 2nd USENIX Conference on Hot Topics in Cloud Computing. Berkeley: USENIX Association, 2010:1-7. 16 SHVACHKOK, KUANGH, RADIAS, et al. The Hadoop distributed file system [C]// Proceedings of the IEEE 26th Symposium on Mass Storage Systems and Technologies. Piscataway: IEEE, 2010: 1-10. 17 WANGD, ZHOUF, LIJ. Cloud-based parallel power flow calculation using resilient distributed datasets and directed acyclic graph [J]. Journal of Modern Power Systems and Clean Energy, 2019, 7(1): 65-77. 18 MOFFAG, CATONEG, KUIPERSJ, et al. Using directed acyclic graphs in epidemiological research in psychosis: an analysis of the role of bullying in psychosis [J]. Schizophrenia Bulletin, 2017, 43(6): 1273-1279. 19 HEP, ZHUJ, XUP, et al. A directed acyclic graph approach to online log parsing [EB/OL]. [2019-01-10]. https://arxiv.org/pdf/1806.04356.pdf. 20 TOSHNIWALA, TANEJAS, SHUKLAA, et al. Storm@twitter [C]// Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data. New York: ACM, 2014: 147-156. 21 CARBONEP, KATSIFODIMOSA, EWENS, et al. Apache Flink: stream and batch processing in a single engine [J]. Bulletin of the IEEE Computer Society Technical Committee on Data Engineering, 2015, 36(4): 28-38. 22 NEUMEYERL, ROBBINSB, NAIRA, et al. S4: distributed stream computing platform [C]// Proceedings of the 2010 IEEE International Conference on Data Mining Workshops. Piscataway: IEEE, 2010: 170-177. 23 VENKATARAMANS, PANDAA, OUSTERHOUTK, et al. Drizzle: Fast and adaptable stream processing at scale [C]// Proceedings of the 26th Symposium on Operating Systems Principles. New York: ACM, 2017: 374-389. 24 ARMBRUSTM, DAS T, TORRESJ, et al. Structured streaming: a declarative API for real-time applications in Apache Spark [C]// Proceedings of the 2018 International Conference on Management of Data. New York: ACM, 2018: 601-613. 25 INTERLANDIM, EKMEKJIA, SHAHK, et al. Adding data provenance support to Apache Spark [J]. The VLDB Journal, 2018, 27(5): 595-615. 26 HABIB-UR-REHMANM, AHMEDE, YAQOOBI, et al. Big data analytics in industrial IoT using a concentric computing model[J]. IEEE Communications Magazine, 2018, 56(2): 37-43. 27 AKIDAUT, BRADSHAWR, CHAMBERSC, et al. The dataflow model: a practical approach to balancing correctness, latency, and cost in massive-scale, unbounded, out-of-order data processing [J]. Proceedings of the VLDB Endowment, 2015, 8(12): 1792-1803. 28 KRISHNANS P T, GONZALEZJ L U. Google cloud dataflow [M]// KRISHNAN S P T, GONZALEZ J L U. Building Your Next Big Thing with Google Cloud Platform. Berkeley: Apress, 2015: 255-275. 29 KREPSJ, NARKHEDEN, RAOJ. Kafka: a distributed messaging system for log processing [EB/OL]. [2019-01-10]. http://notes.stephenholiday.com/Kafka.pdf. 30 ISAHH, ZULKERNINEF. A scalable and robust framework for data stream ingestion [C]// Proceedings of the 2018 IEEE International Conference on Big Data. Piscataway: IEEE, 2018: 2900-2905. 31 ARDAGNAC A, BELLANDIV, CERAVOLOP, et al. A model-driven methodology for big data analytics-as-a-service [C]// Proceedings of the 2017 IEEE International Congress on Big Data. Piscataway: IEEE, 2017: 105-112. |