1 |
ZAJONC R B, MARKUS H. Affective and cognitive factors in preferences[J]. Journal of Consumer Research, 1982,9(2):123-131.
|
2 |
赵时海,付晓东,岳昆,等.用户群体满意度最大化的Top-k在线服务评价[J]. 软件学报, 2021, 32(11):3388-3403.
|
|
ZHAO S H, FU X D, YUE K, et al. Top-k online service evaluating to maximize satisfaction of user group[J]. Journal of Software, 2021,32(11): 3388-3403.
|
3 |
徐海燕,姜瑛.针对复杂用户评论的代码质量属性判断[J]. 软件学报,2021,32(7):2183-2203.
|
|
XU H Y, JIANG Y. Determination of code quality attribute for complex user’s comments[J]. Journal of Software,2021,32(7):2183-2203.
|
4 |
ZHOU S, DAI X, CHEN H, et al. Interactive recommender system via knowledge graph-enhanced reinforcement learning[C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, Virtual Event China. New York: ACM, 2020: 179-188.
|
5 |
吴宾,陈允,孙中川,等.联合成对排序的物品推荐模型[J].通信学报,2019,40(9):193-206.
|
|
WU B, CHEN Y, SUN Z C, et al. Co-pairwise ranking model for item recommendation[J]. Journal on Communications, 2019, 40(9): 193-206.
|
6 |
孙肖依,刘华锋,景丽萍,等. 基于列表级排序的深度生成推荐方法[J].计算机研究与发展,2020,57(8):1697-1706.
|
|
SUN X Y, LIU H F, JING L P, et al. Deep generative recommendation based on list-wise ranking[J]. Journal of Computer Research and Development, 2020, 57(8): 1697-1706.
|
7 |
FU X, YUE K, LIU L, et al. Aggregating ordinal user preferences for effective reputation computation of online services[C]//Proceedings of the 2016 IEEE International Conference on Web Services. Piscataway: IEEE, 2016:554-561.
|
8 |
付晓东, 彭俊, 岳昆, 等.面向不完整序数偏好的在线服务评价[J].计算机集成制造系统, 2021, 27(10):2774-2785.
|
|
FU X D, PENG J, YUE K, et al. Online service evaluation for incomplete ordinal preference[J]. Computer Integrated Manufacturing Systems, 2021, 27(10):2774-2785.
|
9 |
HUANG S, WANG S, LIU T-Y, et al. Listwise collaborative filtering[C]// Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2015:343-352.
|
10 |
UREÑA R, CHICLANA F, MORENTE-MOLINERA J A, et al. Managing incomplete preference relations in decision making: a review and future trends[J]. Information Sciences, 2015, 302:14-32.
|
11 |
FELIX B, VINCENT C, ULLE E, et al. Handbook of Computational Social Choice[M]. Cambridge: Cambridge University Press, 2016:223-256.
|
12 |
SEPLIARSKAIA A, KISELEVA J, RADLINSKI F, et al. Preference elicitation as an optimization problem[C]// Proceedings of the 12th ACM Conference on Recommender Systems. New York: ACM, 2018:172-180.
|
13 |
LU T, BOUTILIER C. Robust approximation and incremental elicitation in voting protocols[C]// Proceedings of the 22nd International Joint Conference on Artificial Intelligence. Menlo Park: AAAI Press, 2011: 287-293.
|
14 |
ZHANG X, CUI L, WANG Y. CommTrust: computing multi-dimensional trust by mining e-commerce feedback comments[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(7): 1631-1643.
|
15 |
WANG S, SUN J, GAO B J, et al. VSRank: a novel framework for ranking-based collaborative filtering[J]. ACM Transactions on Intelligent Systems and Technology, 2014, 5(3): Article No. 51.
|
16 |
GUIVER J, SNELSON E. Bayesian inference for Plackett-Luce ranking models[C]// Proceedings of the 26th Annual International Conference on Machine Learning. New York: ACM, 2009:377-384.
|
17 |
ZHAO Z, VILLAMIL T, XIA L. Learning mixtures of random utility models[C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Menlo Park: AAAI Press, 2018: 4530-4538.
|
18 |
VITELLI V, ØYSTEIN S, CRISPINO M, et al. Probabilistic preference learning with the Mallows rank model[J]. The Journal of Machine Learning Research, 2017, 18(1): 5796-5844.
|
19 |
PRIYOGI B. Preference elicitation strategy for conversational recommender system[C]// Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining. New York: ACM, 2019:824-825.
|
20 |
BU Y, ZOU S, LIANG Y, et al. Estimation of KL divergence: optimal minimax rate[J]. IEEE Transactions on Information Theory, 2018, 64(4): 2648-2674.
|
21 |
LI L, XUE M, ZHANG Z, et al. Certainty-based preference completion[J]. Data Intelligence, 2022, 4(1):112-133.
|
22 |
LU T, BOUTILIER C. Effective sampling and learning for Mallows models with pairwise-preference data[J]. The Journal of Machine Learning Research, 2014,15(1):3783-3829.
|
23 |
LIU A, ZHAO Z, LIAO C. Learning Plackett-Luce mixtures from partial preferences[C]// Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Menlo Park: AAAI Press, 2019:4328-4335.
|
24 |
MAYSTRE L, GROSSGLAUSER M. Fast and accurate inference of Plackett-Luce models[C]// Proceedings of the 28th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2015:172-180.
|
25 |
TKACHENKO M, LAUW W H. Plackett-Luce regression mixture model for heterogeneous rankings [C]// Proceedings of the 25th ACM International on Conference on Information and Knowledge Management. New York: ACM, 2016:237-246.
|
26 |
MATTEI N, WALSH T. PrefLib: a library for preferences data[C]// Proceedings of the 3rd International Conference on Algorithmic Decision Theory. Cham: Springer, 2013: 259-270.
|