《计算机应用》唯一官方网站 ›› 2024, Vol. 44 ›› Issue (10): 3252-3259.DOI: 10.11772/j.issn.1001-9081.2023101508
• 第40届CCF中国数据库学术会议(NDBC 2023) • 上一篇 下一篇
周北京1, 王海荣1,2(), 王怡梦1, 张丽丝1, 马赫1
收稿日期:
2023-11-06
修回日期:
2023-12-23
接受日期:
2023-12-28
发布日期:
2024-10-15
出版日期:
2024-10-10
通讯作者:
王海荣
作者简介:
周北京(1997—),男,湖南衡阳人,硕士研究生,CCF会员,主要研究方向:基于知识图谱的推荐系统基金资助:
Beijing ZHOU1, Hairong WANG1,2(), Yimeng WANG1, Lisi ZHANG1, He MA1
Received:
2023-11-06
Revised:
2023-12-23
Accepted:
2023-12-28
Online:
2024-10-15
Published:
2024-10-10
Contact:
Hairong WANG
About author:
ZHOU Beijing, born in 1997, M. S. candidate. His research interests include recommendation system based on knowledge graph.Supported by:
摘要:
根据知识图谱(KG)丰富用户和项目信息的侧重不同,现有的图谱嵌入传播的推荐方法可归纳为用户嵌入传播、项目嵌入传播和混合嵌入传播这3类。用户嵌入传播方法侧重使用用户交互的项目和KG学习用户表示;项目嵌入传播方法使用KG中的实体表征项目;而混合嵌入传播方法融合了用户-项目交互信息和KG,以弥补前两类方法存在的信息利用不充分的不足。为深入对比3类方法的技术特点,重点剖析图谱嵌入传播的推荐方法中的图谱构建、嵌入传播和预测这3个核心任务的关键技术;同时,在MovieLens、Booking-Crossing和Last.FM通用数据集上复现每类方法中的主流模型,通过使用点击率(CTR)指标对比分析上述方法的效果。分析实验结果可知,混合嵌入传播方法的推荐性能最优,它综合了用户和项目嵌入传播方法的优势,利用交互信息和KG增强用户和项目表示;此外,对比分析每类方法,阐述各自的优缺点并展望未来的研究工作。
中图分类号:
周北京, 王海荣, 王怡梦, 张丽丝, 马赫. 图谱嵌入传播的推荐方法[J]. 计算机应用, 2024, 44(10): 3252-3259.
Beijing ZHOU, Hairong WANG, Yimeng WANG, Lisi ZHANG, He MA. Recommendation method using knowledge graph embedding propagation[J]. Journal of Computer Applications, 2024, 44(10): 3252-3259.
模型 | MovieLens-1M | Book-Crossing | ||
---|---|---|---|---|
AUC | ACC | AUC | ACC | |
RippleNet | 0.843 5 | 0.767 1 | 0.771 4 | 0.725 4 |
AKUPM | 0.918 1 | 0.845 2 | 0.843 5 | 0.807 2 |
CIEPA | 0.925 4 | 0.849 6 | 0.853 1 | 0.815 4 |
表1 典型的用户嵌入传播方法对比分析
Tab. 1 Comparative analysis of typical user embedding propagation methods
模型 | MovieLens-1M | Book-Crossing | ||
---|---|---|---|---|
AUC | ACC | AUC | ACC | |
RippleNet | 0.843 5 | 0.767 1 | 0.771 4 | 0.725 4 |
AKUPM | 0.918 1 | 0.845 2 | 0.843 5 | 0.807 2 |
CIEPA | 0.925 4 | 0.849 6 | 0.853 1 | 0.815 4 |
模型 | MovieLens-1M | MovieLens-20M | Book-Crossing | Last.FM | ||||
---|---|---|---|---|---|---|---|---|
AUC | ACC | AUC | ACC | AUC | ACC | AUC | ACC | |
KGCN | 0.900 1 | 0.823 0 | 0.976 7 | 0.929 0 | 0.692 2 | 0.635 4 | 0.803 1 | 0.732 0 |
KGNN-LS | 0.902 7 | 0.826 0 | 0.978 5 | 0.934 1 | 0.689 0 | 0.632 3 | 0.804 2 | 0.714 7 |
KGPL | 0.914 7 | 0.835 3 | 0.976 3 | 0.926 7 | 0.757 3 | 0.670 3 | 0.861 2 | 0.767 8 |
CG-KGR | 0.896 9 | 0.815 1 | 0.983 1 | 0.940 3 | 0.759 5 | 0.701 0 | 0.833 3 | 0.758 4 |
表2 典型的项目嵌入传播方法对比分析
Tab. 2 Comparative analysis of typical item embedding propagation methods
模型 | MovieLens-1M | MovieLens-20M | Book-Crossing | Last.FM | ||||
---|---|---|---|---|---|---|---|---|
AUC | ACC | AUC | ACC | AUC | ACC | AUC | ACC | |
KGCN | 0.900 1 | 0.823 0 | 0.976 7 | 0.929 0 | 0.692 2 | 0.635 4 | 0.803 1 | 0.732 0 |
KGNN-LS | 0.902 7 | 0.826 0 | 0.978 5 | 0.934 1 | 0.689 0 | 0.632 3 | 0.804 2 | 0.714 7 |
KGPL | 0.914 7 | 0.835 3 | 0.976 3 | 0.926 7 | 0.757 3 | 0.670 3 | 0.861 2 | 0.767 8 |
CG-KGR | 0.896 9 | 0.815 1 | 0.983 1 | 0.940 3 | 0.759 5 | 0.701 0 | 0.833 3 | 0.758 4 |
模型 | MovieLens-1M | MovieLens-20M | Book-Crossing | Last.FM | ||||
---|---|---|---|---|---|---|---|---|
AUC | ACC | AUC | ACC | AUC | ACC | AUC | ACC | |
KGAT | 0.910 2 | 0.838 9 | 0.981 3 | 0.912 1 | 0.719 4 | 0.689 9 | 0.805 4 | 0.764 1 |
CKAN | 0.917 8 | 0.844 0 | 0.971 7 | 0.921 8 | 0.745 3 | 0.655 9 | 0.846 3 | 0.746 2 |
KGIN | 0.884 0 | 0.621 3 | 0.989 4 | 0.892 2 | 0.804 2 | 0.738 1 | 0.855 5 | 0.711 0 |
COAT | 0.892 2 | 0.811 2 | 0.978 4 | 0.930 2 | 0.740 7 | 0.697 3 | 0.789 4 | 0.714 1 |
LKGR | 0.917 0 | 0.845 3 | 0.982 9 | 0.941 6 | 0.679 3 | 0.637 2 | 0.796 3 | 0.716 1 |
表3 典型的混合嵌入传播方法对比分析
Tab. 3 Comparative analysis of typical hybrid embedding propagation methods
模型 | MovieLens-1M | MovieLens-20M | Book-Crossing | Last.FM | ||||
---|---|---|---|---|---|---|---|---|
AUC | ACC | AUC | ACC | AUC | ACC | AUC | ACC | |
KGAT | 0.910 2 | 0.838 9 | 0.981 3 | 0.912 1 | 0.719 4 | 0.689 9 | 0.805 4 | 0.764 1 |
CKAN | 0.917 8 | 0.844 0 | 0.971 7 | 0.921 8 | 0.745 3 | 0.655 9 | 0.846 3 | 0.746 2 |
KGIN | 0.884 0 | 0.621 3 | 0.989 4 | 0.892 2 | 0.804 2 | 0.738 1 | 0.855 5 | 0.711 0 |
COAT | 0.892 2 | 0.811 2 | 0.978 4 | 0.930 2 | 0.740 7 | 0.697 3 | 0.789 4 | 0.714 1 |
LKGR | 0.917 0 | 0.845 3 | 0.982 9 | 0.941 6 | 0.679 3 | 0.637 2 | 0.796 3 | 0.716 1 |
1 | HE X, LIAO L, ZHANG H, et al. Neural collaborative filtering[C]// Proceedings of the 26th International Conference on World Wide Web. New York: ACM, 2017: 173-182. |
2 | HE X, HE Z, SONG J, et al. NAIS: neural attentive item similarity model for recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 30(12): 2354-2366. |
3 | WANG H, ZHANG F, HOU M, et al. SHINE: signed heterogeneous information network embedding for sentiment link prediction[C]// Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining. New York: ACM, 2018: 592-600. |
4 | JAMALI M, ESTER M. A matrix factorization technique with trust propagation for recommendation in social networks[C]// Proceedings of the 4th ACM Conference on Recommender Systems. New York: ACM, 2010: 135-142. |
5 | DU Y, ZHU X, CHEN L, et al. MetaKG: meta-learning on knowledge graph for cold-start recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(10): 9850-9863. |
6 | 季德强,王海荣,李明亮,等.融合用户-项目的邻居实体表示推荐方法[J]. 中文信息学报, 2022,36(9):112-119. |
JI D Q, WANG H R, LI M L, et al. Incorporating user-item neighbor entity for recommendation[J]. Journal of Chinese Information Processing, 2022, 36(9): 112-119. | |
7 | 李想,杨兴耀,于炯,等.基于知识图谱卷积网络的双端推荐算法[J].计算机科学与探索,2022,16(1):176-184. |
LI X, YANG X Y, YU J, et al. Double end knowledge graph convolutional networks for recommender systems[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(1): 176-184. | |
8 | YU X, REN X, SUN Y, et al. Personalized entity recommendation: a heterogeneous information network approach[C]// Proceedings of the 7th ACM International Conference on Web Search and Data Mining. New York: ACM, 2014: 283-292. |
9 | ZHANG F, YUAN N J, LIAN D, et al. Collaborative knowledge base embedding for recommender systems[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2016: 353-362. |
10 | ZHAO H, YAO Q, LI J, et al. Meta-graph based recommendation fusion over heterogeneous information networks[C]// Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery &Data Mining. New York: ACM, 2017: 635-644. |
11 | ZHANG Z, ZHANG L, YANG D, et al. KRAN: knowledge refining attention network for recommendation[J]. ACM Transactions on Knowledge Discovery from Data, 2021, 16(2): Article No. 39. |
12 | GUO J, ZHOU Y, ZHANG P, et al. Trust-aware recommendation based on heterogeneous multi-relational graphs fusion[J]. Information Fusion, 2021, 74: 87-95. |
13 | 高仰,刘渊.融合社交关系和知识图谱的推荐算法[J].计算机科学与探索, 2023, 17(1): 238-250. |
GAO Y, LIU Y. Recommendation algorithm combining social relationship and knowledge graph[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(1): 238-250. | |
14 | ZHANG H, SHEN X, YI B, et al. KGAN: knowledge grouping aggregation network for course recommendation in MOOCs[J]. Expert Systems with Applications, 2023, 211: 118344. |
15 | WANG X, HE X, CAO Y, et al. KGAT: knowledge graph attention network for recommendation[C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2019: 950-958. |
16 | MA T, HUANG L, LU Q, et al. KR-GCN: knowledge-aware reasoning with graph convolution network for explainable recommendation[J]. ACM Transactions on Information Systems, 2023, 41(1): Article No. 4. |
17 | 梁浩宏,古天龙,宾辰忠,等.联合学习用户端和项目端知识图谱的个性化推荐[J].计算机科学, 2021, 48(5): 109-116. |
LIANG H H, GU T L, BIN C Z, et al. Combining user-end and item-end knowledge graph learning for personalized recommendation[J]. Computer Science, 2021, 48(5): 109-116. | |
18 | 秦琪琦,张月琴,王润泽,等.基于知识图谱的层次粒化推荐方法[J].计算机科学, 2022, 49(8): 64-69. |
QIN Q Q, ZHANG Y Q, WANG R Z, et al. Hierarchical granulation recommendation method based on knowledge graph[J]. Computer Science, 2022, 49(8): 64-69. | |
19 | GUO Q, ZHUANG F, QIN C, et al. A survey on knowledge graph-based recommender systems[J]. IEEE Transactions on Knowledge and Data Engineering, 2020, 34(8): 3549-3568. |
20 | 朱冬亮,文奕,万子琛.基于知识图谱的推荐系统研究综述[J]. 数据分析与知识发现, 2021, 5(12): 1-13. |
ZHU D L, WEN Y, WAN Z C. Review of recommendation systems based on knowledge graph[J]. Data Analysis and Knowledge Discovery, 2021, 5(12): 1-13. | |
21 | 吴正洋,汤庸,刘海.个性化学习推荐研究综述[J].计算机科学与探索, 2022, 16(1): 21-40. |
WU Z Y, TANG Y, LIU H. Survey of personalized learning recommendation[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(1): 21-40. | |
22 | HU B, SHI C, ZHAO W X, et al. Leveraging meta-path based context for top-N recommendation with a neural co-attention model[C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2018: 1531-1540. |
23 | WANG X, WANG D, XU C, et al. Explainable reasoning over knowledge graphs for recommendation[C]// Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2019: 5329-5336. |
24 | XIAN Y, FU Z, MUTHUKRISHNAN S, et al. Reinforcement knowledge graph reasoning for explainable recommendation[C]// Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2019: 285-294. |
25 | WANG H, ZHAN F, XIE X, et al. DKN: deep knowledge-aware network for news recommendation[C]// Proceedings of the 2018 World Wide Web Conference. New York: ACM, 2018: 1835-1844. |
26 | CAO Y, WANG X, HE X, et al. Unifying knowledge graph learning and recommendation: towards a better under-standing of user preferences[C]// Proceedings of the 2019 World Wide Web Conference. New York: ACM, 2019: 151-161. |
27 | CHOWDHURY G, SRILAKSHMI M, CHAIN M, et al. Neural factorization for offer recommendation using knowledge graph embeddings[EB/OL]. [2023-10-01]. . |
28 | HUANG R, HAN C, CUI L. Entity-aware collaborative relation network with knowledge graph for recommendation[C]// Proceedings of the 30th ACM International Conference on Information & Knowledge Management. New York: ACM, 2021: 3098-3102. |
29 | WANG F, LI Y, ZHANG Y, et al. KLGCN: knowledge graph-aware light graph convolutional network for recommender systems[J]. Expert Systems with Applications, 2022, 195: 116513. |
30 | CAO X, SHI Y, YU H, et al. DEKR: description enhanced knowledge graph for machine learning method recommendation[C]// Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2021: 203-212. |
31 | WAN S, PAN S, YANG J, et al. Contrastive and generative graph convolutional networks for graph-based semi-super-vised learning[C]// Proceedings of the 2021 AAAI Conference on Artificial Intelligence. Menlo Park: AAAI Press, 2021, 35(11): 10049-10057. |
32 | YANG D, SONG Z, XUE L, et al. A knowledge-enhanced recommendation model with attribute-level co-attention[C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 1909-1912. |
33 | WANG H, ZHANG F, WANG J, et al. RippleNet: propagating user preferences on the knowledge graph for recommender systems[C]// Proceedings of the 27th ACM International Conference on Information and Knowledge Management. New York: ACM, 2018: 417-426. |
34 | WANG H, ZHAO M, XIE X, et al. Knowledge graph convolutional networks for recommender systems[C]// Proceedings of the 2019 World Wide Web Conference. New York: ACM, 2019: 3307-3313. |
35 | TANG X, WANG T, YANG H, et al. AKUPM: attention-enhanced knowledge-aware user preference model for recommendation[C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2019: 1891-1899. |
36 | LI Q, TANG X, WANG T, et al. Unifying task-oriented knowledge graph learning and recommendation[J]. IEEE Access, 2019, 7: 115816-115828. |
37 | WANG H, ZHANG F, ZHANG M, et al. Knowledge-aware graph neural networks with label smoothness regularization for recommender systems[C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2019: 968-977. |
38 | TOGASHI R, OTANI M, SATOCH S. Alleviating cold-start problems in recommendation through pseudo-labelling over knowledge graph[C]// Proceedings of the 14th ACM International Conference on Web Search and Data Mining. New York: ACM, 2021: 931-939. |
39 | CHEN Y, YANG Y, WANG Y, et al. Attentive knowledge-aware graph convolutional networks with collaborative guidance for personalized recommendation[C]// Proceedings of the 2022 IEEE 38th IEEE International Conference on Data Engineering. Piscataway: IEEE, 2022: 299-311. |
40 | WANG Z, LIN G, TAN H, et al. CKAN: collaborative knowledge-aware attentive network for recommender systems[C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 219-228. |
41 | WANG X, HUANG T, WANG D, et al. Learning intents behind interactions with knowledge graph for recommendation[C]// Proceedings of the 2021 World Wide Web Conference. New York: ACM, 2021: 878-887. |
42 | DAI Q, WU X M, FAN L, et al. Personalized knowledge-aware recommendation with collaborative and attentive graph convolutional networks[J]. Pattern Recognition, 2022, 128: 108628. |
43 | CHEN Y, YANG M, ZHANG Y, et al. Modeling scale-free graphs with hyperbolic geometry for knowledge-aware recommendation [C]// Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining. New York: ACM, 2022: 94-102. |
44 | LU L, WANG B, ZHANG Z, et al. VRKG4Rec: virtual relational knowledge graph for recommendation[C]// Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining. New York: ACM, 2023: 526-534. |
45 | SUN R, CAO X, ZHAO Y, et al. Multi-modal knowledge graphs for recommender systems[C]// Proceedings of the 29th ACM International Conference on Information & Knowledge Management. New York: ACM, 2020: 1405-1414. |
46 | 李世宝,张益维,刘建航,等.基于知识图谱共同邻居排序采样的推荐模型[J].电子与信息学报, 2021, 43(12): 3522-3529. |
LI S B, ZHANG Y W, LIU J H, et al. Recommendation model based on public neighbor sorting and sampling of knowledge graph[J]. Journal of Electronics & Information Technology, 2021, 43(12): 3522-3529. | |
47 | WANG X, XU Y, HE X, et al. Reinforced negative sampling over knowledge graph for recommendation[C]// Proceedings of the 2020 World Wide Web Conference. New York: ACM, 2020: 99-109. |
48 | WANG Y, LIU Z, FAN Z, et al. DSKReG: differentiable sampling on knowledge graph for recommendation with relational GNN[C]// Proceedings of the 30th ACM International Conference on Information & Knowledge Management. New York: ACM, 2021: 3513-3517. |
49 | KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks [EB/OL]. (2017-02-22) [2023-10-01]. . |
50 | HAMILTON W L, YING Z, LESKOVEC J. Inductive representation learning on large graphs[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates, 2017: 1025-1035. |
51 | VELIČKOVIĆ P, CUCURULL G, CASANOVA A, et al. Graph attention networks[EB/OL]. (2020-02-26) [2023-10-01]. . |
52 | BORDES A, USUNIER N, GARCIA-DURÁN A, et al. Translating embeddings for modeling multi-relational data[C]// Proceedings of the 26th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates, 2013: 2787-2795. |
53 | WANG Z, ZHANG J, FENG J, et al. Knowledge graph embedding by translating on hyperplanes[C]// Proceedings of the 28th AAAI Conference on Artificial Intelligence. Menlo Park: AAAI Press, 2014: 1112-1119. |
54 | JI G L, HE S, XU L,et al. Knowledge graph embedding via dynamic mapping matrix[C]// Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Stroudsburg: ACL, 2015: 687-696. |
55 | LIN Y, XU B, FENG J, et al. Knowledge-enhanced recommendation using item embedding and path attention[J]. Knowledge-Based Systems, 2021, 233: 107484. |
56 | 孟宪法, 刘方, 李广, 等. 卷积神经网络压缩中的知识蒸馏技术综述[J]. 计算机科学与探索, 2021, 15(10): 1812-1829. |
MENG X F, LIU F, LI G, et al. Review of knowledge distillation in convolutional neural network compression[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(10): 1812-1829. |
[1] | 杜郁, 朱焱. 构建预训练动态图神经网络预测学术合作行为消失[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2726-2731. |
[2] | 武杰, 张安思, 吴茂东, 张仪宗, 王从宝. 知识图谱在装备故障诊断领域的研究与应用综述[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2651-2659. |
[3] | 杨航, 李汪根, 张根生, 王志格, 开新. 基于图神经网络的多层信息交互融合算法用于会话推荐[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2719-2725. |
[4] | 唐廷杰, 黄佳进, 秦进. 基于图辅助学习的会话推荐[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2711-2718. |
[5] | 杨兴耀, 陈羽, 于炯, 张祖莲, 陈嘉颖, 王东晓. 结合自我特征和对比学习的推荐模型[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2704-2710. |
[6] | 薛桂香, 王辉, 周卫峰, 刘瑜, 李岩. 基于知识图谱和时空扩散图卷积网络的港口交通流量预测[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2952-2957. |
[7] | 杨帆, 邹窈, 朱明志, 马振伟, 程大伟, 蒋昌俊. 基于图注意力Transformer神经网络的信用卡欺诈检测模型[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2634-2642. |
[8] | 杨莹, 郝晓燕, 于丹, 马垚, 陈永乐. 面向图神经网络模型提取攻击的图数据生成方法[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2483-2492. |
[9] | 赵宇博, 张丽萍, 闫盛, 侯敏, 高茂. 基于改进分段卷积神经网络和知识蒸馏的学科知识实体间关系抽取[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2421-2429. |
[10] | 唐廷杰, 黄佳进, 秦进, 陆辉. 基于图共现增强多层感知机的会话推荐[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2357-2364. |
[11] | 林欣蕊, 王晓菲, 朱焱. 基于局部扩展社区发现的学术异常引用群体检测[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1855-1861. |
[12] | 于右任, 张仰森, 蒋玉茹, 黄改娟. 融合多粒度语言知识与层级信息的中文命名实体识别模型[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1706-1712. |
[13] | 李健京, 李贯峰, 秦飞舟, 李卫军. 基于不确定知识图谱嵌入的多关系近似推理模型[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1751-1759. |
[14] | 汪炅, 唐韬韬, 贾彩燕. 无负采样的正样本增强图对比学习推荐方法PAGCL[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1485-1492. |
[15] | 郭洁, 林佳瑜, 梁祖红, 罗孝波, 孙海涛. 基于知识感知和跨层次对比学习的推荐方法[J]. 《计算机应用》唯一官方网站, 2024, 44(4): 1121-1127. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||