《计算机应用》唯一官方网站 ›› 2025, Vol. 45 ›› Issue (9): 2798-2805.DOI: 10.11772/j.issn.1001-9081.2024081159
• 人工智能 • 上一篇
收稿日期:
2024-08-16
修回日期:
2024-10-05
接受日期:
2024-10-16
发布日期:
2024-11-07
出版日期:
2025-09-10
通讯作者:
王淑营
作者简介:
任登燃(1999—),男,四川达州人,硕士研究生,主要研究方向:自然语言处理、知识图谱
基金资助:
Received:
2024-08-16
Revised:
2024-10-05
Accepted:
2024-10-16
Online:
2024-11-07
Published:
2025-09-10
Contact:
Shuying WANG
About author:
REN Dengran, born in 1999, M. S. candidate. His research interests include natural language processing, knowledge graph.
Supported by:
摘要:
针对风电装备领域中实体的高度嵌套性和长文本的特性,提出一种基于差分边界增强的嵌套命名实体识别模型(DBE-NER)。首先,通过语义编码器模块获取融合实体头尾词、实体类型和相对距离的特征表示,从而提升模型对嵌套语义特征的捕捉能力;其次,设计一种高效的差分语义编码模块解决嵌套实体边界的模糊问题;再次,使用分组空洞注意力网络(GDAN)提高模型在长文本实体、嵌套实体和嵌套边界的识别效果;最后,将特征分数矩阵输入跨度解码器中以得到实体位置和类别。实验结果表明,与DiFiNet(Differentiation and Filtration Network)和CNN-NER(Convolutional Neural Network for Named Entity Recognition)模型相比,DBE-NER的F1分数在人工标注的某大型风电能源企业故障数据集WPEF上分别提升了0.92%和1.07%,并且在多种公开数据集上的F1分数均有所提高。
中图分类号:
任登燃, 王淑营. 基于差分边界增强的风电装备嵌套命名实体识别模型[J]. 计算机应用, 2025, 45(9): 2798-2805.
Dengran REN, Shuying WANG. Nested named entity recognition model for wind power equipment based on differential boundary enhancement[J]. Journal of Computer Applications, 2025, 45(9): 2798-2805.
数据集 | 句子数 | 句子平均长度 | 实体数 | 嵌套比例/% | |
---|---|---|---|---|---|
ACE2004 | Train | 6 200 | 22.50 | 22 201 | 23.07 |
Dev | 745 | 23.02 | 2 514 | 21.44 | |
Test | 812 | 23.05 | 3 035 | 23.00 | |
ACE2005 | Train | 7 291 | 20.55 | 25 300 | 20.01 |
Dev | 979 | 20.17 | 3 321 | 18.31 | |
Test | 1 060 | 18.49 | 3 099 | 19.04 | |
Genia | Train | 5 038 | 26.49 | 46 203 | 9.35 |
Dev | 1 765 | 25.78 | 4 714 | 9.36 | |
Test | 1 732 | 27.06 | 5 119 | 11.81 | |
WPEF | Train | 1 615 | 72.14 | 14 656 | 39.11 |
Dev | 203 | 71.96 | 1 878 | 39.24 | |
Test | 201 | 71.01 | 1 737 | 37.54 |
表1 数据集的统计信息
Tab. 1 Statistical information of datasets
数据集 | 句子数 | 句子平均长度 | 实体数 | 嵌套比例/% | |
---|---|---|---|---|---|
ACE2004 | Train | 6 200 | 22.50 | 22 201 | 23.07 |
Dev | 745 | 23.02 | 2 514 | 21.44 | |
Test | 812 | 23.05 | 3 035 | 23.00 | |
ACE2005 | Train | 7 291 | 20.55 | 25 300 | 20.01 |
Dev | 979 | 20.17 | 3 321 | 18.31 | |
Test | 1 060 | 18.49 | 3 099 | 19.04 | |
Genia | Train | 5 038 | 26.49 | 46 203 | 9.35 |
Dev | 1 765 | 25.78 | 4 714 | 9.36 | |
Test | 1 732 | 27.06 | 5 119 | 11.81 | |
WPEF | Train | 1 615 | 72.14 | 14 656 | 39.11 |
Dev | 203 | 71.96 | 1 878 | 39.24 | |
Test | 201 | 71.01 | 1 737 | 37.54 |
数据集 | 批次大小 | 训练轮次 | 学习率 | 双仿射 特征数 | 多头数 | 空洞扩展块 | 相对距离维度 | 实体类别维度 | 语义特征维度 | 神经元 丢弃率 | 解码器 阈值 |
---|---|---|---|---|---|---|---|---|---|---|---|
ACE2004 | 8 | 50 | 1E-03 | 512 | 2 | [ | 20 | 20 | 256 | 0.3 | 0.6 |
ACE2005 | 8 | 30 | 1E-03 | 256 | 2 | [ | 20 | 20 | 128 | 0.5 | 0.8 |
Genia | 8 | 8 | 5E-04 | 512 | 4 | [ | 20 | 20 | 128 | 0.4 | 0.5 |
WPEF | 4 | 30 | 1E-03 | 512 | 4 | [ | 20 | 20 | 200 | 0.4 | 0.8 |
表2 模型的相关超参数
Tab. 2 Model related hyperparameters
数据集 | 批次大小 | 训练轮次 | 学习率 | 双仿射 特征数 | 多头数 | 空洞扩展块 | 相对距离维度 | 实体类别维度 | 语义特征维度 | 神经元 丢弃率 | 解码器 阈值 |
---|---|---|---|---|---|---|---|---|---|---|---|
ACE2004 | 8 | 50 | 1E-03 | 512 | 2 | [ | 20 | 20 | 256 | 0.3 | 0.6 |
ACE2005 | 8 | 30 | 1E-03 | 256 | 2 | [ | 20 | 20 | 128 | 0.5 | 0.8 |
Genia | 8 | 8 | 5E-04 | 512 | 4 | [ | 20 | 20 | 128 | 0.4 | 0.5 |
WPEF | 4 | 30 | 1E-03 | 512 | 4 | [ | 20 | 20 | 200 | 0.4 | 0.8 |
模型 | ACE2004 | ACE2005 | ||||
---|---|---|---|---|---|---|
P | R | F1分数 | P | R | F1分数 | |
Diffusion* | 86.44 | 87.38 | 86.91 | 84.75 | 87.35 | 86.04 |
BS* | 86.54 | 87.51 | 87.02 | 85.59 | 87.41 | 86.49 |
W2NER* | 86.68 | 87.05 | 86.87 | 85.56 | 87.93 | 86.73 |
CNN-NER* | 86.68 | 87.94 | 87.31 | 85.44 | 87.71 | 86.56 |
DiFiNet* | 87.79 | 87.87 | 87.83 | 86.6 | 87.22 | 86.61 |
DBE-NER | 87.85 | 87.91 | 87.88 | 86.49 | 87.77 | 87.12 |
表3 在ACE2004和ACE2005数据集上的模型性能 (%)
Tab. 3 Model performance on ACE2004 and ACE2005 datasets
模型 | ACE2004 | ACE2005 | ||||
---|---|---|---|---|---|---|
P | R | F1分数 | P | R | F1分数 | |
Diffusion* | 86.44 | 87.38 | 86.91 | 84.75 | 87.35 | 86.04 |
BS* | 86.54 | 87.51 | 87.02 | 85.59 | 87.41 | 86.49 |
W2NER* | 86.68 | 87.05 | 86.87 | 85.56 | 87.93 | 86.73 |
CNN-NER* | 86.68 | 87.94 | 87.31 | 85.44 | 87.71 | 86.56 |
DiFiNet* | 87.79 | 87.87 | 87.83 | 86.6 | 87.22 | 86.61 |
DBE-NER | 87.85 | 87.91 | 87.88 | 86.49 | 87.77 | 87.12 |
模型 | P | R | F1分数 |
---|---|---|---|
DiffusionNER* | 79.18 | 77.93 | 78.55 |
BS* | 80.31 | 78.59 | 79.44 |
W2NER | 81.58 | 79.11 | 80.32 |
CNN-NER | 81.52 | 79.12 | 80.33 |
DiFiNet* | 81.42 | 79.55 | 80.47 |
DBE-NER | 81.65 | 79.96 | 80.79 |
表4 在Genia数据集上模型的性能 (%)
Tab. 4 Model performance on Genia dataset
模型 | P | R | F1分数 |
---|---|---|---|
DiffusionNER* | 79.18 | 77.93 | 78.55 |
BS* | 80.31 | 78.59 | 79.44 |
W2NER | 81.58 | 79.11 | 80.32 |
CNN-NER | 81.52 | 79.12 | 80.33 |
DiFiNet* | 81.42 | 79.55 | 80.47 |
DBE-NER | 81.65 | 79.96 | 80.79 |
模型 | P | R | F1分数 |
---|---|---|---|
DiffusionNER* | 82.85 | 88.54 | 85.55 |
BS* | 82.41 | 87.90 | 85.01 |
W2NER* | 86.18 | 87.69 | 85.96 |
CNN-NER* | 82.92 | 89.52 | 86.09 |
DiFiNet* | 83.57 | 89.06 | 86.22 |
DBE-NER | 86.81 | 87.21 | 87.01 |
表5 在WPEF数据集上模型的性能 (%)
Tab. 5 Model performance on WPEF dataset
模型 | P | R | F1分数 |
---|---|---|---|
DiffusionNER* | 82.85 | 88.54 | 85.55 |
BS* | 82.41 | 87.90 | 85.01 |
W2NER* | 86.18 | 87.69 | 85.96 |
CNN-NER* | 82.92 | 89.52 | 86.09 |
DiFiNet* | 83.57 | 89.06 | 86.22 |
DBE-NER | 86.81 | 87.21 | 87.01 |
消融模块 | Genia | WPEF |
---|---|---|
w.o 多头机制 | 80.30 | 86.29 |
w.o 融合距离和类型 | 80.39 | 86.45 |
w.o 边界语义增强器 | 80.19 | 86.49 |
w.o 实体边界探测器 | 80.59 | 86.28 |
w.o CBAM | 80.64 | 86.71 |
DBE-NER | 80.79 | 87.01 |
表6 消融模块后的F1分数对比 (%)
Tab. 6 Comparison of F1 score after module ablation
消融模块 | Genia | WPEF |
---|---|---|
w.o 多头机制 | 80.30 | 86.29 |
w.o 融合距离和类型 | 80.39 | 86.45 |
w.o 边界语义增强器 | 80.19 | 86.49 |
w.o 实体边界探测器 | 80.59 | 86.28 |
w.o CBAM | 80.64 | 86.71 |
DBE-NER | 80.79 | 87.01 |
[1] | 张晓艳,王挺,陈火旺. 命名实体识别研究[J]. 计算机科学, 2005, 32(4):44-48. |
ZHANG X Y, WANG T, CHEN H W. Research on named entity recognition [J]. Computer Science, 2005, 32(4): 44-48. | |
[2] | 高翔,王石,朱俊武,等. 命名实体识别任务综述[J]. 计算机科学, 2023, 50(6A): No.220200119. |
GAO X, WANG S, ZHU J W, et al. Overview of named entity recognition tasks [J]. Computer Science, 2023, 50(6A): No.220200119. | |
[3] | 李莉,奚雪峰,盛胜利,等. 深度学习中文命名实体识别研究进展[J]. 计算机工程与应用, 2023, 59(24): 46-69. |
LI L, XI X F, SHENG S L, et al. Research progress on named entity recognition in Chinese deep learning [J]. Computer Engineering and Applications, 2023, 59(24): 46-69. | |
[4] | LIU X, CHEN H, XIA W. Overview of named entity recognition[J]. Journal of Contemporary Educational Research, 2022, 6(5): 65-68. |
[5] | DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional Transformers for language understanding [C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Stroudsburg: ACL, 2019: 4171-4186. |
[6] | WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module [C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11211. Cham: Springer, 2018: 3-19. |
[7] | 余诗媛,郭淑明,黄瑞阳,等. 嵌套命名实体识别研究进展[J]. 计算机科学, 2021, 48(11A): 1-10. |
YU S Y, GUO S M, HUANG R Y, et al. Overview of nested named entity recognition[J]. Computer Science, 2021, 48(11A): 1-10. | |
[8] | LU W, ROTH D. Joint mention extraction and classification with mention hypergraphs [C]// Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2015: 857-867. |
[9] | MUIS A O, LU W. Labeling gaps between words: recognizing overlapping mentions with mention separators [C]// Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2017: 2608-2618. |
[10] | KATIYAR A, CARDIE C. Nested named entity recognition revisited [C]// Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Stroudsburg: ACL, 2018: 861-871. |
[11] | JU M, MIWA M, ANANIADOU S. A neural layered model for nested named entity recognition [C]// Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Stroudsburg: ACL, 2018: 1446-1459. |
[12] | STRAKOVÁ J, STRAKA M, HAJIC J. Neural architectures for nested NER through linearization [C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2019: 5326-5331. |
[13] | LI X, FENG J, MENG Y, et al. A unified MRC framework for named entity recognition [C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 5849-5859. |
[14] | SOHRAB M G, MIWA M. Deep exhaustive model for nested named entity recognition [C]// Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2018: 2843-2849. |
[15] | YU J, BOHNET B, POESIO M. Named entity recognition as dependency parsing [C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 6470-6476. |
[16] | ZHU E, LI J. Boundary smoothing for named entity recognition[C]// Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg: ACL, 2022:7096-7108. |
[17] | YUAN Z, TAN C, HUANG S, et al. Fusing heterogeneous factors with triaffine mechanism for nested named entity recognition [C]// Findings of the Association for Computational Linguistics: ACL 2022. Stroudsburg: ACL, 2022: 3174-3186. |
[18] | LI J, FEI H, LIU J, et al. Unified named entity recognition as word-word relation classification [C]// Proceedings of the 36th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2022: 10965-10973. |
[19] | YAN H, SUN Y, LI X, et al. An embarrassingly easy but strong baseline for nested named entity recognition [C]// Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). Stroudsburg: ACL, 2023: 1442-1452. |
[20] | DODDINGTON G, MITCHELL A, PRZYBOCKI M, et al. The Automatic Content Extraction (ACE) program — tasks, data, and evaluation [C]// Proceedings of the 4th International Conference on Language Resources and Evaluation. Paris: European Language Resources Association, 2004: 837-840. |
[21] | WALKER C, STRASSEL C, MEDERO S, et al. ACE2005 multilingual training corpus [DS/OL]. [2024-04-10].. |
[22] | KIM J D, OHTA T, TATEISI Y, et al. GENIA corpus — a semantically annotated corpus for bio-text mining [J]. Bioinformatics, 2003, 19(S1): i180-i182. |
[23] | SHEN Y, SONG K, TAN X, et al. DiffusionNER: boundary diffusion for named entity recognition [C]// Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg: ACL, 2023: 3875-3890. |
[24] | CAI Y, LIU Q, GAN Y, et al. DiFiNet: boundary-aware semantic differentiation and filtration network for nested named entity recognition [C]// Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg: ACL, 2024: 6455-6471. |
[1] | 李莉, 宋涵, 刘培鹤, 陈汉林. 基于数据增强和残差网络的敏感信息命名实体识别[J]. 《计算机应用》唯一官方网站, 2025, 45(9): 2790-2797. |
[2] | 余婧, 陈艳平, 扈应, 黄瑞章, 秦永彬. 结合实体边界偏移的序列标注优化方法[J]. 《计算机应用》唯一官方网站, 2025, 45(8): 2522-2529. |
[3] | 张立孝, 马垚, 杨玉丽, 于丹, 陈永乐. 基于命名实体识别的大规模物联网二进制组件识别[J]. 《计算机应用》唯一官方网站, 2025, 45(7): 2288-2295. |
[4] | 徐章杰, 陈艳平, 扈应, 黄瑞章, 秦永彬. 联合边界生成的多目标学习的嵌套命名实体识别[J]. 《计算机应用》唯一官方网站, 2025, 45(7): 2229-2236. |
[5] | 胡婕, 武帅星, 曹芝兰, 张龑. 基于全域信息融合和多维关系感知的命名实体识别模型[J]. 《计算机应用》唯一官方网站, 2025, 45(5): 1511-1519. |
[6] | 曾碧卿, 钟广彬, 温志庆. 基于分解式模糊跨度的小样本命名实体识别[J]. 《计算机应用》唯一官方网站, 2025, 45(5): 1504-1510. |
[7] | 吕学强, 王涛, 游新冬, 徐戈. 层次融合多元知识的命名实体识别框架——HTLR[J]. 《计算机应用》唯一官方网站, 2025, 45(1): 40-47. |
[8] | 李烨恒, 罗光圣, 苏前敏. 基于改进YOLOv5的Logo检测算法[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2580-2587. |
[9] | 孙焕良, 王思懿, 刘俊岭, 许景科. 社交媒体数据中水灾事件求助信息提取模型[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2437-2445. |
[10] | 于右任, 张仰森, 蒋玉茹, 黄改娟. 融合多粒度语言知识与层级信息的中文命名实体识别模型[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1706-1712. |
[11] | 董永峰, 白佳明, 王利琴, 王旭. 融合先验知识和字形特征的中文命名实体识别[J]. 《计算机应用》唯一官方网站, 2024, 44(3): 702-708. |
[12] | 黄子麒, 胡建鹏. 实体类别增强的汽车领域嵌套命名实体识别[J]. 《计算机应用》唯一官方网站, 2024, 44(2): 377-384. |
[13] | 罗歆然, 李天瑞, 贾真. 基于自注意力机制与词汇增强的中文医学命名实体识别[J]. 《计算机应用》唯一官方网站, 2024, 44(2): 385-392. |
[14] | 张小艳, 段正宇. 基于句级别GAN的跨语言零资源命名实体识别模型[J]. 《计算机应用》唯一官方网站, 2023, 43(8): 2406-2411. |
[15] | 雷景生, 剌凯俊, 杨胜英, 吴怡. 基于上下文语义增强的实体关系联合抽取[J]. 《计算机应用》唯一官方网站, 2023, 43(5): 1438-1444. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||