1 |
HUANG Z, XU W, YU K. Bidirectional LSTM-CRF models for sequence tagging[EB/OL]. [2023-09-01]..
|
2 |
SANTORO A, BARTUNOV S, BOTVINICK M, et al. Meta-learning with memory-augmented neural networks[C]// Proceedings of the 33rd International Conference on Machine Learning. New York: JMLR.org, 2016: 1842-1850.
|
3 |
MA X, HOVY E. End-to-end sequence labeling via bi-directional LSTM-CNNs-CRF[C]// Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg: ACL, 2016: 1064-1074.
|
4 |
LAMPLE G, BALLESTEROS M, SUBRAMANIAN S, et al. Neural architectures for named entity recognition[C]// Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2016: 260-270.
|
5 |
PETERS M E, AMMAR W, BHAGAVATULA C, et al. Semi-supervised sequence tagging with bidirectional language models[C]// Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg: ACL, 2017: 1756-1765.
|
6 |
DING N, XU G, CHEN Y, et al. Few-NERD: a few-shot named entity recognition dataset[C]// Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Stroudsburg: ACL, 2021: 3198-3213.
|
7 |
HUANG J, LI C, SUBUDHI K, et al. Few-shot named entity recognition: an empirical baseline study[C]// Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2021: 10408-10423.
|
8 |
MA T, JIANG H, WU Q, et al. Decomposed meta-learning for few-shot named entity recognition[C]// Findings of the Association for Computational Linguistics: ACL 2022. Stroudsburg: ACL, 2022: 1584-1596.
|
9 |
DAS S S S, KATIYAR A, PASSONNEAU R J, et al. CONTaiNER: few-shot named entity recognition via contrastive learning[C]// Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg: ACL, 2022: 6338-6353.
|
10 |
HOU Y, CHE W, LAI Y, et al. Few-shot slot tagging with collapsed dependency transfer and label-enhanced task-adaptive projection network[C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 1381-1393.
|
11 |
ZIYADI M, SUN Y, GOSWAMI A, et al. Example-based named entity recognition[EB/OL]. [2023-09-01]..
|
12 |
FRITZLER A, LOGACHEVA V, KRETOV M. Few-shot classification in named entity recognition task[C]// Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing. New York: ACM, 2019: 993-1000.
|
13 |
MA J, BALLESTEROS M, DOSS S, et al. Label semantics for few shot named entity recognition[C]// Findings of the Association for Computational Linguistics: ACL 2022. Stroudsburg: ACL, 2022: 1956-1971.
|
14 |
SHEN Y, MA X, TAN Z, et al. Locate and label: a two-stage identifier for nested named entity recognition[C]// Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Stroudsburg: ACL, 2021: 2782-2794.
|
15 |
WANG P, XU R, LIU T, et al. An enhanced span-based decomposition method for few-shot sequence labeling[C]// Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2022: 5012-5024.
|
16 |
WU S, SHEN Y, TAN Z, et al. Propose-and-Refine: a two-stage set prediction network for nested named entity recognition[C]// Proceedings of the 31st International Joint Conference on Artificial Intelligence. San Francisco: Morgan Kaufmann Publishers Inc., 2022: 4418-4424.
|
17 |
KULKARNI V, MEHDAD Y, CHEVALIER T. Domain adaptation for named entity recognition in online media with word embeddings[EB/OL]. [2023-11-01]..
|
18 |
FINN C, ABBEEL P, LEVINE S. Model-agnostic meta-learning for fast adaptation of deep networks[C]// Proceedings of the 34th International Conference on Machine Learning. New York: PMLR, 2017: 1126-1135.
|
19 |
VINYALS O, BLUNDELL C, LILLICRAP T, et al. Matching networks for one shot learning[C]// Proceedings of the 30th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2016: 3637-3645.
|
20 |
SNELL J, SWERSKY K, ZEMEL R. Prototypical networks for few-shot learning[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 4080-4090.
|
21 |
RAVI S, LAROCHELLE H. Optimization as a model for few-shot learning[EB/OL]. [2023-09-21]..
|
22 |
SUNG F, YANG Y, ZHANG L, et al. Learning to compare: relation network for few-shot learning[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 1199-1208.
|
23 |
DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional Transformers for language understanding[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Stroudsburg: ACL, 2019: 4171-4186.
|
24 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 6000-6010.
|
25 |
WANG J, WANG C, TAN C, et al. SpanProto: a two-stage span-based prototypical network for few-shot named entity recognition[C]// Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2022: 3466-3476.
|
26 |
SANG E F, DE MEULDER F. Introduction to the CoNLL-2003 shared task: language-independent named entity recognition[C]// Proceedings of the 7th Conference on Natural Language Learning at HLT-NAACL 2003. Stroudsburg: ACL, 2003: 142-147.
|
27 |
ZELDES A. The GUM corpus: creating multilayer resources in the classroom[J]. Language Resources and Evaluation, 2017, 51(3): 581-612.
|
28 |
DERCZYNSKI L, NICHOLS E, VAN ERP M, et al. Results of the WNUT2017 shared task on novel and emerging entity recognition[C]// Proceedings of the 3rd Workshop on Noisy User-generated Text. Stroudsburg: ACL, 2017: 140-147.
|
29 |
PRADHAN S, MOSCHITTI A, XUE N, et al. Towards robust linguistic analysis using OntoNotes[C]// Proceedings of the 17th Conference on Computational Natural Language Learning. Stroudsburg: ACL, 2013: 143-152.
|
30 |
YANG Y, KATIYAR A. Simple and effective few-shot named entity recognition with structured nearest neighbor learning[C]// Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2020: 6365-6375.
|
31 |
戚荣志,周俊宇,李水艳,等.基于细粒度原型网络的小样本命名实体识别方法[J].软件学报,2024,35(10):4751-4765.
|
|
QI R Z, ZHOU J Y, LI S Y, et al. Few-shot named entity recognition based on fine-grained prototypical networks[J]. Journal of Software, 2024, 35(10): 4751-4765.
|
32 |
LI Y, YU Y, QIAN T. Type-aware decomposed framework for few-shot named entity recognition[C]// Findings of the Association for Computational Linguistics: EMNLP 2023. Stroudsburg: ACL, 2023: 8911-8927.
|
33 |
LOSHCHILOV I, HUTTER F. Decoupled weight decay regularization[EB/OL]. [2024-09-01]..
|
34 |
VAN DER MAATEN L, HINTON G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9: 2579-2605.
|