| 1 | HUANG Z, XU W, YU K. Bidirectional LSTM-CRF models for sequence tagging[EB/OL]. [2023-09-01].. | 
																													
																						| 2 | SANTORO A, BARTUNOV S, BOTVINICK M, et al. Meta-learning with memory-augmented neural networks[C]// Proceedings of the 33rd International Conference on Machine Learning. New York: JMLR.org, 2016: 1842-1850. | 
																													
																						| 3 | MA X, HOVY E. End-to-end sequence labeling via bi-directional LSTM-CNNs-CRF[C]// Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg: ACL, 2016: 1064-1074. | 
																													
																						| 4 | LAMPLE G, BALLESTEROS M, SUBRAMANIAN S, et al. Neural architectures for named entity recognition[C]// Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2016: 260-270. | 
																													
																						| 5 | PETERS M E, AMMAR W, BHAGAVATULA C, et al. Semi-supervised sequence tagging with bidirectional language models[C]// Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg: ACL, 2017: 1756-1765. | 
																													
																						| 6 | DING N, XU G, CHEN Y, et al. Few-NERD: a few-shot named entity recognition dataset[C]// Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Stroudsburg: ACL, 2021: 3198-3213. | 
																													
																						| 7 | HUANG J, LI C, SUBUDHI K, et al. Few-shot named entity recognition: an empirical baseline study[C]// Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2021: 10408-10423. | 
																													
																						| 8 | MA T, JIANG H, WU Q, et al. Decomposed meta-learning for few-shot named entity recognition[C]// Findings of the Association for Computational Linguistics: ACL 2022. Stroudsburg: ACL, 2022: 1584-1596. | 
																													
																						| 9 | DAS S S S, KATIYAR A, PASSONNEAU R J, et al. CONTaiNER: few-shot named entity recognition via contrastive learning[C]// Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg: ACL, 2022: 6338-6353. | 
																													
																						| 10 | HOU Y, CHE W, LAI Y, et al. Few-shot slot tagging with collapsed dependency transfer and label-enhanced task-adaptive projection network[C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 1381-1393. | 
																													
																						| 11 | ZIYADI M, SUN Y, GOSWAMI A, et al. Example-based named entity recognition[EB/OL]. [2023-09-01].. | 
																													
																						| 12 | FRITZLER A, LOGACHEVA V, KRETOV M. Few-shot classification in named entity recognition task[C]// Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing. New York: ACM, 2019: 993-1000. | 
																													
																						| 13 | MA J, BALLESTEROS M, DOSS S, et al. Label semantics for few shot named entity recognition[C]// Findings of the Association for Computational Linguistics: ACL 2022. Stroudsburg: ACL, 2022: 1956-1971. | 
																													
																						| 14 | SHEN Y, MA X, TAN Z, et al. Locate and label: a two-stage identifier for nested named entity recognition[C]// Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Stroudsburg: ACL, 2021: 2782-2794. | 
																													
																						| 15 | WANG P, XU R, LIU T, et al. An enhanced span-based decomposition method for few-shot sequence labeling[C]// Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2022: 5012-5024. | 
																													
																						| 16 | WU S, SHEN Y, TAN Z, et al. Propose-and-Refine: a two-stage set prediction network for nested named entity recognition[C]// Proceedings of the 31st International Joint Conference on Artificial Intelligence. San Francisco: Morgan Kaufmann Publishers Inc., 2022: 4418-4424. | 
																													
																						| 17 | KULKARNI V, MEHDAD Y, CHEVALIER T. Domain adaptation for named entity recognition in online media with word embeddings[EB/OL]. [2023-11-01].. | 
																													
																						| 18 | FINN C, ABBEEL P, LEVINE S. Model-agnostic meta-learning for fast adaptation of deep networks[C]// Proceedings of the 34th International Conference on Machine Learning. New York: PMLR, 2017: 1126-1135. | 
																													
																						| 19 | VINYALS O, BLUNDELL C, LILLICRAP T, et al. Matching networks for one shot learning[C]// Proceedings of the 30th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2016: 3637-3645. | 
																													
																						| 20 | SNELL J, SWERSKY K, ZEMEL R. Prototypical networks for few-shot learning[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 4080-4090. | 
																													
																						| 21 | RAVI S, LAROCHELLE H. Optimization as a model for few-shot learning[EB/OL]. [2023-09-21].. | 
																													
																						| 22 | SUNG F, YANG Y, ZHANG L, et al. Learning to compare: relation network for few-shot learning[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 1199-1208. | 
																													
																						| 23 | DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional Transformers for language understanding[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Stroudsburg: ACL, 2019: 4171-4186. | 
																													
																						| 24 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 6000-6010. | 
																													
																						| 25 | WANG J, WANG C, TAN C, et al. SpanProto: a two-stage span-based prototypical network for few-shot named entity recognition[C]// Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2022: 3466-3476. | 
																													
																						| 26 | SANG E F, DE MEULDER F. Introduction to the CoNLL-2003 shared task: language-independent named entity recognition[C]// Proceedings of the 7th Conference on Natural Language Learning at HLT-NAACL 2003. Stroudsburg: ACL, 2003: 142-147. | 
																													
																						| 27 | ZELDES A. The GUM corpus: creating multilayer resources in the classroom[J]. Language Resources and Evaluation, 2017, 51(3): 581-612. | 
																													
																						| 28 | DERCZYNSKI L, NICHOLS E, VAN ERP M, et al. Results of the WNUT2017 shared task on novel and emerging entity recognition[C]// Proceedings of the 3rd Workshop on Noisy User-generated Text. Stroudsburg: ACL, 2017: 140-147. | 
																													
																						| 29 | PRADHAN S, MOSCHITTI A, XUE N, et al. Towards robust linguistic analysis using OntoNotes[C]// Proceedings of the 17th Conference on Computational Natural Language Learning. Stroudsburg: ACL, 2013: 143-152. | 
																													
																						| 30 | YANG Y, KATIYAR A. Simple and effective few-shot named entity recognition with structured nearest neighbor learning[C]// Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2020: 6365-6375. | 
																													
																						| 31 | 戚荣志,周俊宇,李水艳,等.基于细粒度原型网络的小样本命名实体识别方法[J].软件学报,2024,35(10):4751-4765. | 
																													
																						|  | QI R Z, ZHOU J Y, LI S Y, et al. Few-shot named entity recognition based on fine-grained prototypical networks[J]. Journal of Software, 2024, 35(10): 4751-4765. | 
																													
																						| 32 | LI Y, YU Y, QIAN T. Type-aware decomposed framework for few-shot named entity recognition[C]// Findings of the Association for Computational Linguistics: EMNLP 2023. Stroudsburg: ACL, 2023: 8911-8927. | 
																													
																						| 33 | LOSHCHILOV I, HUTTER F. Decoupled weight decay regularization[EB/OL]. [2024-09-01].. | 
																													
																						| 34 | VAN DER MAATEN L, HINTON G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9: 2579-2605. |