《计算机应用》唯一官方网站 ›› 2025, Vol. 45 ›› Issue (5): 1504-1510.DOI: 10.11772/j.issn.1001-9081.2024050567

• 人工智能 • 上一篇    

基于分解式模糊跨度的小样本命名实体识别

曾碧卿1(), 钟广彬1, 温志庆2   

  1. 1.华南师范大学 软件学院,广东 佛山 528225
    2.季华实验室 智能机器人工程研究中心,广东 佛山 528200
  • 收稿日期:2024-05-09 修回日期:2024-07-18 接受日期:2024-07-19 发布日期:2024-07-25 出版日期:2025-05-10
  • 通讯作者: 曾碧卿
  • 作者简介:曾碧卿(1969—),男,湖南衡南人,教授,博士,CCF杰出会员,主要研究方向:自然语言处理、人工智能
    钟广彬(1998—),男,广东梅州人,硕士研究生,主要研究方向:自然语言处理、小样本命名实体识别
    温志庆(1964—),男,山东招远人,教授,博士,主要研究方向:人工智能、机器视觉、光电技术、机器人。
  • 基金资助:
    国家自然科学基金资助项目(62076103);广东省基础与应用基础研究基金资助项目(2021A1515011171);广州市基础研究计划基础与应用基础研究项目(202102080282);佛山市重点领域科技攻关项目(2020001006807)

Few-shot named entity recognition based on decomposed fuzzy span

Biqing ZENG1(), Guangbin ZHONG1, James Zhiqing WEN2   

  1. 1.School of Software,South China Normal University,Foshan Guangdong 528225,China
    2.Intelligent Robot Engineering Research Center,JIHUA Laboratory,Foshan Guangdong 528200,China
  • Received:2024-05-09 Revised:2024-07-18 Accepted:2024-07-19 Online:2024-07-25 Published:2025-05-10
  • Contact: Biqing ZENG
  • About author:ZENG Biqing, born in 1969, Ph. D., professor. His research interests include natural language processing, artificial intelligence.
    ZHONG Guangbin, born in 1998, M. S. candidate. His research interests include natural language processing, few-shot named entity recognition.
    WEN James Zhiqing, born in 1964, Ph. D., professor. His research interests include artificial intelligence, machine vision, optoelectronic technology, robotics.
  • Supported by:
    National Natural Science Foundation of China(62076103);Guangdong Basic and Applied Basic Research Foundation(2021A1515011171);Guangzhou Basic Research Program Basic and Applied Basic Research Project(202102080282);Foshan Key Science and Technology Research Project(2020001006807)

摘要:

小样本命名实体识别(few-shot NER)旨在基于少量标记数据识别文本中的实体跨度和类型。近年来,基于跨度的度量学习虽然取得了不错的效果,但仍然存在2个问题:一是少量的候选跨度可能导致原型偏离群组的中心;二是与类别无关的跨度检测器可能会产生一些非实体跨度。为了解决以上问题,提出一种用于few-shot NER的融合模糊跨度的分解式模型DFSM(Decomposed Fuzzy Span Model)。在跨度检测阶段,为学习明确的实体边界信息且不受标记级别的标签依赖影响,DFSM采用全局边界矩阵检测候选跨度;而在跨度分类阶段,为增加可训练的每种实体类型的候选跨度数量,提出一种模糊跨度策略,以调整候选跨度的边界范围。同时,设计一种原型对比学习以优化基于跨度的语义表示空间。此外,为消除非实体噪声数据的干扰,引入原型边界学习以扩大非实体跨度与原型的距离。在Few-NERD和CrossNER数据集上的实验结果显示:与基线模型TadNER相比,在Few-NERD Inter设置中,DFSM的平均F1值提升了8.52个百分点,尤其是在Inter 10 way 5~10-shot设置中,DFSM的平均F1值提升了10.39个百分点,这表明DFSM对于细粒度实体类型具有更强的识别能力;与基线模型DecomMeta相比,在CrossNER 1-shot和5-shot设置中,DFSM的平均F1值分别提升了3.32和1.09个百分点,这表明DFSM在跨领域低资源场景下具有良好的泛化能力。

关键词: 命名实体识别, 小样本学习, 原型网络, 全局边界矩阵, 模糊跨度

Abstract:

Few-shot Named Entity Recognition (few-shot NER) aims to identify entity spans and their types in text based on limited labeled data. Although span-based metric learning has achieved promising results in recent years, two challenges remain: first, prototypes may be pulled away from cluster centers due to sparse candidate spans; second, some non-entity spans may be produced by span detectors that are irrelevant to the categories. To address these issues, a decomposed model integrating fuzzy span, namely DFSM (Decomposed Fuzzy Span Model), was proposed for few-shot NER. In the span detection stage, a global boundary matrix was used to detect candidate spans, enabling the learning of explicit entity boundary information without dependency on labels at token level. In the span classification stage, a fuzzy span strategy was proposed to adjust the boundary ranges of candidate spans, thereby increasing the number of trainable candidate spans for each entity type. Meanwhile, a prototypical contrastive learning was designed to optimize the span-based semantic representation space. Besides, prototypical boundary learning was introduced to enlarge the distance between non-entity spans and prototypes, eliminating interference from non-entity noisy data. Experimental results on Few-NERD and CrossNER datasets show that: compared to the baseline model TadNER, DFSM achieves an average F1-score gain of 8.52 percentage points under the Few-NERD Inter setting, with a notable 10.39 percentage points improvement in the Inter 10-way 5 - 10-shot scenario, highlighting its enhanced capability for fine-grained entity recognition; compared to the baseline model DecomMeta, DFSM achieves F1-score improvements of 3.32 and 1.09 percentage points in CrossNER 1-shot and CrossNER 5-shot setting, respectively, demonstrating the good generalization ability of DFSM in cross-domain low-resource scenarios.

Key words: Named Entity Recognition (NER), few-shot learning, prototypical network, global boundary matrix, fuzzy span

中图分类号: