[1] |
XU J H, WU H X, WANG J, et al. Anomaly Transformer: time series anomaly detection with association discrepancy[EB/OL]. [2024-09-02]..
|
[2] |
ELMAN J L. Finding structure in time[J]. Cognitive Science, 1990, 14(2): 179-211.
|
[3] |
HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
|
[4] |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 6000-6010.
|
[5] |
SCARSELLI F, GORI M, TSOI A C, et al. The graph neural network model[J]. IEEE Transactions on Neural Networks, 2009, 20(1): 61-80.
|
[6] |
徐胤博,于洋. 基于K-means聚类的舰船通信网络异常数据检测[J]. 舰船科学技术, 2023, 45(16): 169-172.
|
|
XU Y B, YU Y. Detection of abnormal data in ship communication network based on K-means clustering[J]. Ship Science and Technology, 2023, 45(16): 169-172.
|
[7] |
KHREICH W, KHOSRAVIFAR B, HAMOU-LHADJ A, et al. An anomaly detection system based on variable N-gram features and one-class SVM[J]. Information and Software Technology, 2017, 91: 186-197.
|
[8] |
SALEM O, GUERASSIMOV A, MEHAOUA A, et al. Anomaly detection in medical wireless sensor networks using SVM and linear regression models[J]. International Journal of E-Health and Medical Communications, 2014, 5(1): 20-45.
|
[9] |
HUNDMAN K, CONSTANTINOU V, LAPORTE C, et al. Detecting spacecraft anomalies using LSTMs and nonparametric dynamic thresholding[C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2018: 387-395.
|
[10] |
ZONG B, SONG Q, MIN M R, et al. Deep autoencoding Gaussian mixture model for unsupervised anomaly detection[EB/OL]. [2024-09-01]..
|
[11] |
PARK D, HOSHI Y, KEMP C C. A multimodal anomaly detector for robot-assisted feeding using an LSTM-based variational autoencoder[J]. IEEE Robotics and Automation Letters, 2018, 3(3): 1544-1551.
|
[12] |
SU Y, ZHAO Y, NIU C, et al. Robust anomaly detection for multivariate time series through stochastic recurrent neural network[C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2019: 2828-2837.
|
[13] |
AUDIBERT J, MICHIARDI P, GUYARD F, et al. USAD: unsupervised anomaly detection on multivariate time series[C]// Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2020: 3395-3404.
|
[14] |
ABDULAAL A, LIU Z, LANCEWICKI T. Practical approach to asynchronous multivariate time series anomaly detection and localization[C]// Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2021: 2485-2494.
|
[15] |
赵培,乔焰,胡荣耀,等. 基于多域特征提取的多变量时间序列异常检测[J]. 计算机应用, 2024, 44(11):3419-3426.
|
|
ZHAO P, QIAO Y, HU R Y, et al. Multivariate time series anomaly detection based on multi-domain feature extraction[J]. Journal of Computer Applications, 2024, 44(11):3419-3426.
|
[16] |
DENG A, HOOI B. Graph neural network-based anomaly detection in multivariate time series[C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2021: 4027-4035.
|
[17] |
ZHAO H, WANG Y, DUAN J, et al. Multivariate time-series anomaly detection via graph attention network[C]// Proceedings of the 2020 IEEE International Conference on Data Mining. Piscataway: IEEE, 2020: 841-850.
|
[18] |
NIE Y, NGUYEN N H, SINTHONG P, et al. A time series is worth 64 words: long-term forecasting with Transformers[EB/OL]. [2024-09-01]..
|
[19] |
ZHOU T, MA Z, WEN Q, et al. FEDformer: frequency enhanced decomposed Transformer for long-term series forecasting[C]// Proceedings of the 39th International Conference on Machine Learning. New York: JMLR.org, 2022: 27268-27286.
|
[20] |
ZHANG W, ZHANG C, TSUNG F. GRELEN: multivariate time series anomaly detection from the perspective of graph relational learning[C]// Proceedings of the 31th International Joint Conference on Artificial Intelligence. California: ijcai.org, 2022: 2390-2397.
|
[21] |
MATHUR A P, TIPPENHAUER N O. SWaT: a water treatment testbed for research and training on ICS security[C]// Proceedings of the 2016 International Workshop on Cyber-physical Systems for Smart Water Networks. Piscataway: IEEE, 2016: 31-36.
|
[22] |
LI D, CHEN D, JIN B, et al. MAD-GAN: multivariate anomaly detection for time series data with generative adversarial networks[C]// Proceedings of the 2019 International Conference on Artificial Neural Networks, LNCS 11730. Cham: Springer, 2019: 703-716.
|
[23] |
TULI S, CASALE G, JENNINGS N R. TranAD: deep Transformer networks for anomaly detection in multivariate time series data[J]. Proceedings of the VLDB Endowment, 2022, 5(6): 1201-1214.
|
[24] |
DING C, SUN S, ZHAO J. MST-GAT: a multimodal spatial-temporal graph attention network for time series anomaly detection[J]. Information Fusion, 2023, 89: 527-536.
|
[25] |
KINGA D P, BA J L, Adam: a method for stochastic optimization[EB/OL]. [2024-08-03]..
|
[26] |
KITAGAWA G, GERSCH W. Linear Gaussian state space modeling[M]// Smoothness priors analysis of time series, LNS 116. New York: Springer, 1996: 55-65.
|
[27] |
REZENDE D J, MOHAMED S. Variational inference with normalizing flows[C]// Proceedings of the 32nd International Conference on Machine Learning. New York: JMLR.org, 2015: 1530-1538.Foundation:This work is partially supported by Technology Achievement Transfer and Transformation Demonstration Project of Sichuan Province (2023ZHCG0005).XIA Yuhe, in born 1999, M. S. candidate. Her research interests include anomaly detection, machine learning, big data analysis.WANG Xiaodong, in born 1973, research fellow. His research interests include network engineering.
|
|
HE Qixue, in born 1978, senior engineer. His research interests include data mining, artificial intelligence.
|