| [1] | GUERRI M F, DISTANTE C, SPAGNOLO P, et al. Deep learning techniques for hyperspectral image analysis in agriculture: a review[J]. ISPRS Open Journal of Photogrammetry and Remote Sensing, 2024, 12: No.100062. | 
																													
																						| [2] | GU Y, LIU T, GAO G, et al. Multimodal hyperspectral remote sensing: an overview and perspective [J]. SCIENCE CHINA Information Sciences, 2021, 64(2): No.121301. | 
																													
																						| [3] | WANG M, XU Y, WANG Z, et al. Deep margin cosine autoencoder-based medical hyperspectral image classification for tumor diagnosis [J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: No.2520512. | 
																													
																						| [4] | 赖星锦,郑致远,杜晓颜,等. 基于超像素锚图二重降维的高光谱聚类算法[J]. 计算机应用, 2022, 42(7): 2088-2093. | 
																													
																						|  | LAI X J, ZHENG Z Y, DU X Y, XU S, et al. Hyperspectral clustering algorithm by double dimension-reduction based on super-pixel and anchor graph [J]. Journal of Computer Applications, 2022, 42(7): 2088-2093. | 
																													
																						| [5] | 聂江涛,张磊,魏巍,等. 高光谱图像超分辨率重建技术研究进展[J]. 中国图象图形学报, 2023, 28(6): 1685-1697. | 
																													
																						|  | NIE J T, ZHANG L, WEI W, et al. A survey of hyperspectral image super-resolution method [J]. Journal of Image and Graphics, 2023, 28(6): 1685-1697. | 
																													
																						| [6] | LI Q, WANG Q, LI X. Mixed 2D/3D convolutional network for hyperspectral image super-resolution [J]. Remote Sensing, 2020, 12(10): No.1660. | 
																													
																						| [7] | XU Y, HOU J, ZHU X, et al. Hyperspectral image super-resolution with ConvLSTM skip-connections [J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: No.5519016. | 
																													
																						| [8] | DONG W, FU F, SHI G, et al. Hyperspectral image super-resolution via non-negative structured sparse representation [J]. IEEE Transactions on Image Processing, 2016, 25(5): 2337-2352. | 
																													
																						| [9] | DIAN R, LI S. Hyperspectral image super-resolution via subspace-based low tensor multi-rank regularization [J]. IEEE Transactions on Image Processing, 2019, 28(10): 5135-5146. | 
																													
																						| [10] | YANG J, WU C, YOU T, et al. Hierarchical spatio-spectral fusion for hyperspectral image super resolution via sparse representation and pre-trained deep model [J]. Knowledge-Based Systems, 2023, 260: No.110170. | 
																													
																						| [11] | FU X, LIANG H, JIA S. Mixed noise-oriented hyperspectral and multispectral image fusion [J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: No.5526916. | 
																													
																						| [12] | KESHAVA N, MUSTARD J F. Spectral unmixing [J]. IEEE Signal Processing Magazine, 2002, 19(1): 44-57. | 
																													
																						| [13] | YOKOYA N, YAIRI T, IWASAKI A. Coupled nonnegative matrix factorization unmixing for hyperspectral and multispectral data fusion [J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(2): 528-537. | 
																													
																						| [14] | WU X, XIAO S, DONG W, et al. Coupled matrix factorization constrained deep hyperspectral and multispectral image fusion [J]. IEEE Sensors Journal, 2024, 24(5): 6392-6404. | 
																													
																						| [15] | HUANG B, SONG H, CUI H, et al. Spatial and spectral image fusion using sparse matrix factorization [J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(3): 1693-1704. | 
																													
																						| [16] | DIAN R, LI S, FANG L. Learning a low tensor-train rank representation for hyperspectral image super-resolution [J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(9): 2672-2683. | 
																													
																						| [17] | PENG Y, LI W, LUO X, et al. Hyperspectral image super-resolution via sparsity regularization based spatial-spectral tensor subspace representation [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 11707-11722. | 
																													
																						| [18] | DIAN R, LIU Y, LI S. Hyperspectral image fusion via a novel generalized tensor nuclear norm regularization [J]. IEEE Transactions on Neural Networks and Learning Systems, 2025, 36(4): 7437-7448. | 
																													
																						| [19] | LI Q, YUAN Y, WANG Q. Multiscale factor joint learning for hyperspectral image super-resolution [J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: No.5523110. | 
																													
																						| [20] | LI J, ZHENG K, GAO L, et al. Enhanced deep image prior for unsupervised hyperspectral image super-resolution [J]. IEEE Transactions on Geoscience and Remote Sensing, 2025, 63: No.5504218. | 
																													
																						| [21] | YANG Y, WANG Y, WANG H, et al. Spectral enhanced sparse transformer network for hyperspectral super-resolution reconstruction [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 17278-17291. | 
																													
																						| [22] | LI J, ZHENG K, GAO L, et al. Model-informed multistage unsupervised network for hyperspectral image super-resolution [J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: No.5516117. | 
																													
																						| [23] | XU S, CAO X, PENG J, et al. Hyperspectral image denoising by asymmetric noise modeling [J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: No.5545214. | 
																													
																						| [24] | MAIRAL J, BACH F, PONCE J, et al. Online dictionary learning for sparse coding [C]// Proceedings of the 26th Annual International Conference on Machine Learning. New York: ACM, 2009: 689-696. | 
																													
																						| [25] | Grupo de Inteligencia Computacional. Hyperspectral remote sensing scenes [EB/OL]. [2025-06-04]. . | 
																													
																						| [26] | YUHAS R H, GOETZ A F H, BOARDMAN J W. Discrimination among semi-arid landscape endmembers using the spectral angle mapper (SAM) algorithm [EB/OL]. [2025-05-11]. . | 
																													
																						| [27] | WALD L. Quality of high resolution synthesised images: is there a simple criterion? [C]// Proceedings of the 3rd Conference “Fusion of Earth Data: Merging Point Measurements, Raster Maps and Remotely Sensed Images”. [S.l.]: SEE/URISCA, 2000: 99-103. |