[1] DOMINGOS P,RICHARDSON M. Mining the network value of customers[C]//Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM,2001:57-66. [2] KEMPE D,KLEINBERG J,TARDOS É. Maximizing the spread of influence through a social network[C]//Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM,2003:137-146. [3] PEROZZI B,AI-RFOU R,SKIENA S. DeepWalk:online learning of social representations[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM,2014:701-710. [4] MIKOLOV T, SUTSKEVER I, CHEN K, et al. Distributed representations of words and phrases and their compositionality[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems. Red Hook, NY:Curran Associates Inc.,2013:3111-3119. [5] GROVER A,LESKOVEC J. node2vec:scalable feature learning for networks[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM,2016:855-864. [6] TANG J,QU M,WANG M,et,al. LINE:large-scale information network embedding[C]//Proceedings of the 24th International Conference on World Wide Web. Republic and Canton of Geneva:International World Wide Web Conferences Steering Committee, 2015:1067-1077. [7] RIBEIRO L F R, SAVERESE P H P, FIGUEIREDO D R. struc2vec:learning node representations from structural identity[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM,2017:385-394. [8] CHEN W,WANG Y,YANG S. Efficient influence maximization in social networks[C]//Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM,2009:199-208. [9] 李敏佳, 许国艳, 朱帅, 等. 基于结构洞和度折扣的影响力最大化算法[J]. 计算机应用,2018,38(12):3419-3424.(LI M J, XU G Y,ZHU S,et,al. Influence maximization algorithm based on structure hole and degree discount[J]. Journal of Computer Applications,2018,38(12):3419-3424.) [10] ALDAWISH R,KURDI H. A modified degree discount heuristic for influence maximization in social networks[J]. Procedia Computer Science,2020,170:311-316. [11] KIM S,KIM D,OH J,et al. Scalable and parallelizable influence maximization with random walk ranking and rank merge pruning[J]. Information Sciences,2017,415/416:171-189. [12] 张宪立, 唐建新, 曹来成. 基于反向PageRank的影响力最大化算法[J]. 计算机应用,2020,40(1):96-102.(ZHANG X L, TANG J X,CAO L C. Influence maximization algorithm based on reverse PageRank[J]. Journal of Computer Applications,2020, 40(1):96-102.) [13] 吴安彪, 袁野, 乔百友, 等. 大规模时序图影响力最大化的算法研究[J]. 计算机学报,2019,42(12):2647-2664.(WU A B, YUAN Y,QIAO B Y,et al. The influence maximization problem based on large scale temporal graph[J]. Chinese Journal of Computers,2019,42(12):2647-2664.) [14] JIANG Q,SONG G,CONG G,et al. Simulated annealing based influence maximization in social networks[C]//Proceedings of the 25th AAAI Conference on Artificial Intelligence. Palo Alto,CA:AAAI Press,2011:127-132. [15] CUI L,HU H,YU S,et,al. DDSE:a novel evolutionary algorithm based on degree-descending search strategy for influence maximization in social networks[J]. Journal of Network and Computer Applications,2018,103:119-130. [16] GONG M,YAN J,SHEN B,et,al. Influence maximization in social networks based on discrete particle swarm optimization[J]. Information Sciences,2016,367/368:600-614. [17] SANKAR C P,S A,KUMAR K S. Learning from bees:an approach for influence maximization on viral campaigns[J]. PLoS ONE,2016,11(12):No. e0168125. [18] TANG J,ZHANG R,WANG P,et,al. A discrete shuffled frogleaping algorithm to identify influential nodes for influence maximization in social networks[J]. Knowledge-Based Systems, 2020,187:No. 104833. [19] PANAGOPOULOS G,MALLIAROS F D,VAZIRGIANNIS M. DiffuGreedy:an influence maximization algorithm based on diffusion cascades[C]//Proceedings of the 7th International Conference on Complex Networks and Their Applications,SCI 812. Cham:Springer,2019:392-404. [20] WANG F,JIANG W,WANG G,et al. Influence maximization by leveraging the crowdsensing data in information diffusion network[J]. Journal of Network and Computer Applications,2019,136:11-21. [21] 王正海. 基于网络嵌入的影响力最大化算法研究[D]. 兰州:兰州大学,2019:45-54. (WANG Z H. Study of influence maximization based on network embedding[D]. Lanzhou:Lanzhou University,2019:45-54.) [22] FENG S, CONG G, KHAN A, et al. Inf2vec:latent representation model for social influence embedding[C]//Proceedings of the IEEE 34th International Conference on Data Engineering. Piscataway:IEEE,2018:941-952. [23] PANAGOPOULOS G,MALLIAROS F D,VAZIRGIANNIS M. Multi-task learning for influence estimation and maximization[EB/OL].[2021-01-18]. https://arxiv.org/pdf/1904.08804.pdf. [24] PEI S,MUCHNIK L,ANDRADE J S,et al. Searching for superspreaders of information in real-world social media[J]. Scientific Reports,2014,4:No. 5547. [25] MIKOLOV T,CHEN K,CORRADO G,et al. Efficient estimation of word representations in vector space[EB/OL].[2020-11-12]. https://arxiv.org/pdf/1301.3781.pdf. |