[1] PAULS A, KLEIN D. Faster and smaller n-gram language models [C]//HLT '11: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: Association for Computational Linguistics, 2011:258-267. [2] YU J, WANG Y, CHEN H. An improved text feature extraction algorithm based on n-gram [J]. Library and Information Service, 2004, 48(8):48-50. (于津凯,王映雪,陈怀楚.一种基于N-gram改进文本特征提取算法[J].图书情报工作,2004,48(8):48-50.) [3] PEÑAGARIKANO M, VARONA A, RODRÍGUEZ-FUENTES L J, et al. Dimensionality reduction for using high-order n-grams in SVM-based phonotactic language recognition [C]//INTERSPEECH 2011: Proceedings of the 12th Annual Conference of the International Speech Communication Association. London: dblp Computer Science Bibliography, 2011: 853-856. [4] ZAKI T, ES-SAADY Y, MAMMASS D, et al. A hybrid method n-grams-TFIDF with radial basis for indexing and classification of Arabic document [J]. International Journal of Software Engineering and Its Applications, 2014, 8(2): 127-144. [5] SIDOROV G, VELASQUEZ F, STAMATATOS E, et al. Syntactic dependency-based n-grams as classification features [C]//MICAI 2012: Proceedings of the 11th Mexican International Conference on Artificial Intelligence, LNCS 7630. Berlin: Springer, 2013: 1-11. [6] YI Y, GUAN J, ZHOU S. Effective clustering of microRNA sequences by n-grams and feature weighting [C]//Proceedings of the 2012 IEEE 6th International Conference on Systems Biology. Piscataway: IEEE, 2012: 203-210. [7] BOURAS C, TSOGKAS V. Enhancing news articles clustering using word n-grams [C]//DATA 2013: Proceedings of the 2nd International Conference on Data Technologies and Applications. London: dblp Computer Science Bibliography, 2013: 53-60. [8] GHANNAY S, BARRAULT L. Using hypothesis selection based features for confusion network MT system combination [C]//EACL 2014: Proceedings of the 3rd Workshop on Hybrid Approaches to Translation (HyTra). Stroudsburg: Association for Computational Linguistics, 2014: 2-6. [9] SIDOROV G, VELASQUEZ F, STAMATAOS E, et al. Syntactic n-grams as machine learning features for natural language processing [J]. Expert Systems with Applications, 2014, 41(3): 853-860. [10] HAN Q, GUO J, SCHVTZE H. CodeX: combining an SVM classifier and character n-gram language models for sentiment analysis on Twitter text [C]//SemEval 2013: Proceedings of the Second Joint Conference on Lexical and Computational Semantics (*SEM), Volume 2: Proceedings of the Seventh International Workshop on Semantic Evaluation. Stroudsburg: Association for Computational Linguistics, 2013: 520-524. [11] BESPALOY D, BAI B, QI Y, et al. Sentiment classification based on supervised latent n-gram analysis [C]//CIKM '11: Proceedings of the 20th ACM International Conference on Information and Knowledge Management. New York: ACM, 2011: 375-382. [12] MILLER Z, DICKINSON B, HU W. Gender prediction on Twitter using stream algorithms with n-gram character features [J]. International Journal of Intelligence Science, 2012, 2(4A): 143-148. [13] WRIGHT J, LLOYD-THOMAS H. A robust language model incorporating a substring parser and extended n-grams [C]//ICASSP 1994: Proceedings of the 1994 IEEE International Conference on Acoustics, Speech, and Signal Processing. Washington, DC: IEEE Computer Society, 1994: 361-364. [14] HACIOGLU K, WARD W. Dialog-context dependent language modeling combining n-grams and stochastic context-free grammars [C]//ICASSP 2001: Proceedings of the 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Washington, DC: IEEE Computer Society, 2001, 1: 537-540. [15] SIU M, OSTENDORF M. Variable n-grams and extensions for conversational speech language modeling [J]. Speech and Audio Processing, 2000, 1(8): 63-75. [16] ZHOU S, GUAN J, HU Y, et al. A Chinese document categorization system without dictionary support and segmentation processing [J]. Journal of Computer Research and Development, 2001, 38(7): 839-844. (周水庚,关佶红,胡运发,等.一个无需词典支持和切词处理的中文文档分类系统[J].计算机研究与发展,2001,38(7):839-844) [17] GAO Z, LI X. Feature extraction method based on sliding window application in text classification[J]. Science & Technology Information, 2008(34): 23-24. (高振峰,李锡祚.基于滑动窗口的特征提取方法在文本分类中的应用[J].科技信息:学术版,2008(34):23-24.) [18] PENG H, LONG F, DING C. Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(8): 1226-1238. [19] PING Y. Research on clustering and text categorization based on support vector machine[D]. Beijing: Beijing University of Posts and Telecommunications, 2012: 135-136. (平源. 基于支持向量机的聚类及文本分类研究[D]. 北京:北京邮电大学,2012:135-136.) |