Journal of Computer Applications ›› 2015, Vol. 35 ›› Issue (8): 2397-2403.DOI: 10.11772/j.issn.1001-9081.2015.08.2397
Previous Articles Next Articles
LI Feng1, GAO Feng1, KOU Peng2
Received:
2015-03-01
Revised:
2015-04-17
Online:
2015-08-14
Published:
2015-08-10
李丰1, 高峰1, 寇鹏2
通讯作者:
高峰(1967-),男,陕西西安人,教授,博士生导师,博士,主要研究方向:机器学习、系统优化调度,fgao@sei.xjtu.edu.cn
作者简介:
李丰(1988-),女,辽宁绥中人,硕士研究生,主要研究方向:数据挖掘、机器学习; 寇鹏(1983-),男,陕西西安人,讲师,博士,主要研究方向:新能源系统预测与优化控制、电机及拖动系统优化控制、人工智能、机器学习。
基金资助:
国家自然科学基金资助项目(61221063,U1301254,61473218);国家863计划项目(2012AA011003);国家"111引智计划"项目。
CLC Number:
LI Feng, GAO Feng, KOU Peng. Integrating piecewise linear representation and Gaussian process classification for stock turning points prediction[J]. Journal of Computer Applications, 2015, 35(8): 2397-2403.
李丰, 高峰, 寇鹏. 基于分段线性表示和高斯过程分类的股票转折点概率预测[J]. 计算机应用, 2015, 35(8): 2397-2403.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2015.08.2397
[1] LUO L, CHEN X. Integrating piecewise linear representation and weighted support vector machine for stock trading signal prediction [J]. Applied Soft Computing, 2013, 13(2): 806-816. [2] CHANG P-C, FAN C-Y, LIU C-H. Integrating a piecewise linear representation method and a neural network model for stock trading points prediction [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 2009, 39(1): 80-92. [3] CHANG P-C, LIAO T W, LIN J-J, et al. A dynamic threshold decision system for stock trading signal detection [J]. Applied Soft Computing, 2011, 11(5): 3998-4010. [4] ABU-MOSTAFA Y S, ATIYA A F. Introduction to financial forecasting [J]. Applied Intelligence, 1996, 6(3): 205-213. [5] KEOGH E, CHU S, HART D, et al. An online algorithm for segmenting time series [C]//ICDM 2001: Proceedings of the 2001 International Conference on Data Mining. Piscataway: IEEE, 2001: 289-296. [6] KEOGH E, CHU S, HART D, et al. Segmenting time series: a survey and novel approach [J]. Data Mining in Time Series Databases, 2004, 57: 1-22. [7] WU H, SALZBERG B, ZHANG D. Online event-driven subsequence matching over financial data streams [C]//Proceedings of the 2004 ACM SIGMOD International Conference on Management of Data. New York: ACM, 2004: 23-34. [8] AGRAWAL R, FALOUTSOS C, SWAMI A. Efficient similarity search in sequence databases [C]//FODO '93: Proceedings of the 4th International Conference on Foundations of Data Organization and Algorithms, LNCS 730. Berlin: Springer, 1993: 69-84. [9] CHAN K-P, FU W-C. Efficient time series matching by wavelets [C]//ICDE 1999: Proceedings of the 15th International Conference on Data Engineering. Washington, DC: IEEE Computer Society, 1999: 126-133. [10] ZHANG D, ZHOU L. Discovering golden nuggets: data mining in financial application [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 2004, 34(4): 513-522. [11] CAO L J, TAY F E H. Support vector machine with adaptive parameters in financial time series forecasting [J]. IEEE Transactions on Neural Networks, 2003, 14(6): 1506-1518. [12] ZHANG Y, LU R, LUO Y. Electrooculogram assisted electromyography human-machine interface system based on multi-class support vector machine [J]. Journal of Computer Applications, 2014, 34(11): 3357-3360. (张毅,刘睿,罗元.基于支持向量机多分类的眼电辅助肌电的人机交互[J].计算机应用,2014,34(11):3357-3360.) [13] KOU P, LIANG D, GAO F, et al. Probabilistic wind power forecasting with online model selection and warped Gaussian process [J]. Energy Conversion and Management, 2014, 84: 649-663. [14] KOU P, GAO F, GUAN X. Sparse online warped Gaussian process for wind power probabilistic forecasting [J]. Applied Energy, 2013, 108: 410-428. [15] LI Z. Network traffic forecasting model based on Gaussian process regression [J]. Journal of Computer Applications, 2014, 34(5): 1251-1254. (李振刚.基于高斯过程回归的网络流量预测模型[J].计算机应用,2014,34(5):1251-1254.) [16] RASMUSSEN C E, WILLIAMS C K I. Gaussian processes for machine learning [M]. Cambridge: Massachusetts Institute of Technology Press, 2006: 7-102. [17] WILLIAMS C K I, BARBER D. Bayesian classification with Gaussian processes [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998. 20(12): 1342-1351. [18] MINKA T. A family of algorithms for approximate Bayesian inference [D]. Cambridge: Massachusetts Institute of Technology, 2001: 13-65. |
[1] | . Privacy preserving localization of surveillance images based on large vision models [J]. Journal of Computer Applications, 0, (): 0-0. |
[2] | . Federated class-incremental learning method with multi-head self-attention for label semantic embedding [J]. Journal of Computer Applications, 0, (): 0-0. |
[3] | Jingxin LIU, Wenjing HUANG, Liangsheng XU, Chong HUANG, Jiansheng WU. Unsupervised feature selection model with dictionary learning and sample correlation preservation [J]. Journal of Computer Applications, 2024, 44(12): 3766-3775. |
[4] | Yifei SONG, Yi LIU. Fast adversarial training method based on data augmentation and label noise [J]. Journal of Computer Applications, 2024, 44(12): 3798-3807. |
[5] | . Research review on explainable artificial intelligence in internet of things applications [J]. Journal of Computer Applications, 0, (): 0-0. |
[6] | Jiachen YU, Ye YANG. Irregular object grasping by soft robotic arm based on clipped proximal policy optimization algorithm [J]. Journal of Computer Applications, 2024, 44(11): 3629-3638. |
[7] | Zhijie LI, Xuhong LIAO, Yuanxiang LI, Qinglan LI. Disease sample classification algorithm by Bayesian network with gene association analysis [J]. Journal of Computer Applications, 2024, 44(11): 3449-3458. |
[8] | Yuxin HUANG, Yiwang HUANG, Hui HUANG. Meta label correction method based on shallow network predictions [J]. Journal of Computer Applications, 2024, 44(11): 3364-3370. |
[9] | HU Jie, ZHENG Qiyang, SUN Jun, ZHANG Yan. Multi-label classification model based on multi-relational label graph and local dynamic reconstruction learning [J]. Journal of Computer Applications, 0, (): 0-0. |
[10] | Wenze CHAI, Jing FAN, Shukui SUN, Yiming LIANG, Jingfeng LIU. Overview of deep metric learning [J]. Journal of Computer Applications, 2024, 44(10): 2995-3010. |
[11] | Chunyong YIN, Yongcheng ZHOU. Automatically adjusted clustered federated learning for double-ended clustering [J]. Journal of Computer Applications, 2024, 44(10): 3011-3020. |
[12] | Feng CAO, Xiaoling YANG, Jianbing YI, Jun LI. Contradiction separation super-deduction method and application [J]. Journal of Computer Applications, 2024, 44(10): 3074-3080. |
[13] | . Deep symbol regression method based on Transformer [J]. Journal of Computer Applications, 0, (): 0-0. |
[14] | . RecipeFlavor: Recipe Recommendation Model Based on Flavor Embedding and Heterogeneous Graph Hierarchical Learning [J]. Journal of Computer Applications, 0, (): 0-0. |
[15] | . Graph regularized Elastic Net Subspace Clustering [J]. Journal of Computer Applications, 0, (): 0-0. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||