Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (11): 3364-3370.DOI: 10.11772/j.issn.1001-9081.2023111616
• Artificial intelligence • Previous Articles Next Articles
Yuxin HUANG1, Yiwang HUANG1,2(), Hui HUANG3
Received:
2023-11-22
Revised:
2024-02-22
Accepted:
2024-03-08
Online:
2024-03-12
Published:
2024-11-10
Contact:
Yiwang HUANG
About author:
HUANG Yuxin, born in 1998, M. S. candidate. His research interests include noisy label learning, knowledge distillation.Supported by:
通讯作者:
黄贻望
作者简介:
黄雨鑫(1998—),男,福建永泰人,硕士研究生,CCF会员,主要研究方向:噪声标签学习、知识蒸馏基金资助:
CLC Number:
Yuxin HUANG, Yiwang HUANG, Hui HUANG. Meta label correction method based on shallow network predictions[J]. Journal of Computer Applications, 2024, 44(11): 3364-3370.
黄雨鑫, 黄贻望, 黄辉. 基于浅层网络预测的元标签校正方法[J]. 《计算机应用》唯一官方网站, 2024, 44(11): 3364-3370.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023111616
数据集 | 类别数 | 训练集样本数/103 | 测试集 样本数/103 | |
---|---|---|---|---|
干净数据集 | 噪声数据集 | |||
CIFAR10 | 10 | 1 | 49 | 10 |
CIFAR100 | 100 | 1 | 49 | 10 |
Clothing1M | 14 | 50 | 1 000 | 10 |
Tab. 1 Related information of datasets
数据集 | 类别数 | 训练集样本数/103 | 测试集 样本数/103 | |
---|---|---|---|---|
干净数据集 | 噪声数据集 | |||
CIFAR10 | 10 | 1 | 49 | 10 |
CIFAR100 | 100 | 1 | 49 | 10 |
Clothing1M | 14 | 50 | 1 000 | 10 |
噪声 类型 | 噪声 比例 | CIFAR10 | CIFAR100 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CE | GCE | GLC | ELR | MW-Net | MLC | MSLC | Ours | CE | GCE | GLC | ELR | MW-Net | MLC | MSLC | Ours | ||
对称 噪声 | 20 | 86.98 | 90.27 | 91.43 | 91.16 | 91.48 | 89.83 | 93.46 | 92.96 | 58.72 | 71.36 | 69.30 | 74.21 | 69.79 | 58.42 | 72.51 | 73.85 |
40 | 81.88 | 88.50 | 88.52 | 89.15 | 87.34 | 87.32 | 91.42 | 91.06 | 48.20 | 63.39 | 63.24 | 68.28 | 65.44 | 44.92 | 68.98 | 69.74 | |
60 | 74.14 | 83.70 | 84.08 | 86.12 | 81.98 | 83.92 | 87.39 | 87.41 | 37.41 | 58.06 | 56.12 | 59.28 | 55.42 | 28.74 | 60.81 | 61.74 | |
80 | 53.82 | 57.27 | 64.21 | 73.86 | 65.88 | 74.73 | 69.87 | 76.29 | 18.10 | 16.51 | 18.59 | 29.78 | 19.62 | 19.32 | 24.32 | 31.60 | |
非对称 噪声 | 20 | 86.23 | 90.11 | 92.46 | 91.39 | 93.44 | 91.81 | 94.39 | 93.60 | 57.91 | 69.56 | 71.40 | — | 67.54 | 60.19 | 72.66 | 75.47 |
40 | 80.11 | 85.24 | 91.74 | 90.12 | 91.64 | 91.35 | 92.81 | 91.08 | 42.74 | 57.05 | 67.73 | 73.26 | 60.24 | 55.69 | 70.51 | 71.63 |
Tab. 2 Classification accuracy on CIFAR10 and CIFAR100 datasets
噪声 类型 | 噪声 比例 | CIFAR10 | CIFAR100 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CE | GCE | GLC | ELR | MW-Net | MLC | MSLC | Ours | CE | GCE | GLC | ELR | MW-Net | MLC | MSLC | Ours | ||
对称 噪声 | 20 | 86.98 | 90.27 | 91.43 | 91.16 | 91.48 | 89.83 | 93.46 | 92.96 | 58.72 | 71.36 | 69.30 | 74.21 | 69.79 | 58.42 | 72.51 | 73.85 |
40 | 81.88 | 88.50 | 88.52 | 89.15 | 87.34 | 87.32 | 91.42 | 91.06 | 48.20 | 63.39 | 63.24 | 68.28 | 65.44 | 44.92 | 68.98 | 69.74 | |
60 | 74.14 | 83.70 | 84.08 | 86.12 | 81.98 | 83.92 | 87.39 | 87.41 | 37.41 | 58.06 | 56.12 | 59.28 | 55.42 | 28.74 | 60.81 | 61.74 | |
80 | 53.82 | 57.27 | 64.21 | 73.86 | 65.88 | 74.73 | 69.87 | 76.29 | 18.10 | 16.51 | 18.59 | 29.78 | 19.62 | 19.32 | 24.32 | 31.60 | |
非对称 噪声 | 20 | 86.23 | 90.11 | 92.46 | 91.39 | 93.44 | 91.81 | 94.39 | 93.60 | 57.91 | 69.56 | 71.40 | — | 67.54 | 60.19 | 72.66 | 75.47 |
40 | 80.11 | 85.24 | 91.74 | 90.12 | 91.64 | 91.35 | 92.81 | 91.08 | 42.74 | 57.05 | 67.73 | 73.26 | 60.24 | 55.69 | 70.51 | 71.63 |
方法 | 准确率 | 方法 | 准确率 |
---|---|---|---|
CE | 68.94 | MLC | — |
MW-Net | 73.72 | MSLC | 74.02 |
GLC | 73.69 | Bootstrap | 69.12 |
ELR | 72.87 | Ours | 73.81 |
Tab. 3 Classification accuracy on Clothing1M dataset
方法 | 准确率 | 方法 | 准确率 |
---|---|---|---|
CE | 68.94 | MLC | — |
MW-Net | 73.72 | MSLC | 74.02 |
GLC | 73.69 | Bootstrap | 69.12 |
ELR | 72.87 | Ours | 73.81 |
噪声类型 | 噪声 比例 | 准确率 | |||
---|---|---|---|---|---|
预测标签 | 无预测标签 | ||||
Best | Last | Best | Last | ||
对称噪声 | 20 | 73.85 | 73.43 | 73.19 | 64.86 |
40 | 69.74 | 69.13 | 68.45 | 48.52 | |
60 | 61.74 | 61.61 | 60.86 | 32.27 | |
80 | 31.60 | 20.93 | 29.21 | 12.45 | |
非对称噪声 | 20 | 75.74 | 74.95 | 75.33 | 63.95 |
40 | 71.63 | 70.73 | 66.31 | 45.85 |
Tab. 4 Ablation experiment results on predicted label validity based on shallow network on CIFAR100 dataset
噪声类型 | 噪声 比例 | 准确率 | |||
---|---|---|---|---|---|
预测标签 | 无预测标签 | ||||
Best | Last | Best | Last | ||
对称噪声 | 20 | 73.85 | 73.43 | 73.19 | 64.86 |
40 | 69.74 | 69.13 | 68.45 | 48.52 | |
60 | 61.74 | 61.61 | 60.86 | 32.27 | |
80 | 31.60 | 20.93 | 29.21 | 12.45 | |
非对称噪声 | 20 | 75.74 | 74.95 | 75.33 | 63.95 |
40 | 71.63 | 70.73 | 66.31 | 45.85 |
1 | SAMBASIVAN N, KAPANIA S, HIGHFILL H, et al. “Everyone wants to do the model work, not the data work”: data cascades in high-stakes AI[C]// Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems. New York: ACM, 2021: No.39. |
2 | ZHANG H, CISSE M, DAUPHIN Y N, et al. mixup: beyond empirical risk minimization[EB/OL]. [2023-10-30].. |
3 | SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research, 2014, 15: 1929-1958. |
4 | 张增辉,姜高霞,王文剑.基于动态概率抽样的标签噪声过滤方法[J].计算机应用,2021,41(12):3485-3491. |
ZHANG Z H, JIANG G X, WANG W J. Label noise filtering method based on dynamic probability sampling[J]. Journal of Computer Applications, 2021, 41(12): 3485-3491. | |
5 | 魏翔,王靖杰,张顺利,等.ReLSL:基于可靠标签选择与学习的半监督学习算法[J].计算机学报,2022,45(6):1147-1160. |
WEI X, WANG J J, ZHANG S L, et al. ReLSL: reliable label selection and learning based algorithm for semi-supervised learning[J]. Chinese Journal of Computers, 2022, 45(6): 1147-1160. | |
6 | ZHANG Y, ZHENG S, WU P, et al. Learning with feature-dependent label noise: a progressive approach[EB/OL]. [2023-09-05]. . |
7 | 余游,冯林,王格格,等.一种基于伪标签的半监督少样本学习模型[J].电子学报,2019,47(11):2284-2291. |
YU Y, FENG L, WANG G G, et al. A few-shot learning model based on semi-supervised with pseudo label[J]. Acta Electronica Sinica, 2019, 47(11): 2284-2291. | |
8 | FINN C, ABBEEL P, LEVINE S. Model-agnostic meta-learning for fast adaptation of deep networks[C]// Proceedings of the 34th International Conference on Machine Learning. New York: JMLR.org, 2017: 1126-1135. |
9 | 伏博毅,彭云聪,蓝鑫,等. 基于深度学习的标签噪声学习算法综述[J]. 计算机应用, 2023, 43(3): 674-684. |
FU B Y, PENG Y C, LAN X, et al. Survey of label noise learning algorithms based on deep learning[J]. Journal of Computer Applications, 2023, 43(3): 674-684. | |
10 | PATRINI G, ROZZA A, MENON A K, et al. Making deep neural networks robust to label noise: a loss correction approach[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 2233-2241. |
11 | HAN B, YAO Q, YU X, et al. Co-teaching: robust training of deep neural networks with extremely noisy labels[C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2018: 8536-8546. |
12 | SUKHBAATAR S, FERGUS R. Learning from noisy labels with deep neural networks [EB/OL]. [2023-12-11]. . |
13 | HENDRYCKS D, MAZEIKA M, WILSON D, et al. Using trusted data to train deep networks on labels corrupted by severe noise[C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2018: 10477-10486. |
14 | LI Y, YANG J, SONG Y, et al. Learning from noisy labels with distillation[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 1928-1936. |
15 | SHU J, XIE Q, YI L, et al. Meta-weight-net: learning an explicit mapping for sample weighting[C]// Proceedings of the 33rd International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2019: 1919-1930. |
16 | ZHENG G, AWADALLAH A H, DUMAIS S. Meta label correction for noisy label learning[C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2021: 11053-11061. |
17 | HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. |
18 | ZHANG C, BENGIO S, HARDT M, et al. Understanding deep learning (still) requires rethinking generalization[J]. Communications of the ACM, 2021, 64(3): 107-115. |
19 | LIU S, NILES-WEED J, RAZAVIAN N, et al. Early-learning regularization prevents memorization of noisy labels[C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2020: 20331-20342. |
20 | HINTON G, VINVALS O, DEAN J. Distilling the knowledge in a neural network[EB/OL]. [2024-01-08]. . |
21 | XIAO T, XIA T, YANG Y, et al. Learning from massive noisy labeled data for image classification[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 2691-2699. |
22 | ZHANG Z, SABUNCU M R. Generalized cross entropy loss for training deep neural networks with noisy labels[C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2018: 8792-8802. |
23 | WU Y, SHU J, XIE Q, et al. Learning to purify noisy labels via meta soft label corrector[C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2021: 10388-10396. |
24 | REED S E, LEE H, ANGUELOV D, et al. Training deep neural networks on noisy labels with bootstrapping[EB/OL]. [2023-11-30].. |
[1] | Yunchuan HUANG, Yongquan JIANG, Juntao HUANG, Yan YANG. Molecular toxicity prediction based on meta graph isomorphism network [J]. Journal of Computer Applications, 2024, 44(9): 2964-2969. |
[2] | Jieru JIA, Jianchao YANG, Shuorui ZHANG, Tao YAN, Bin CHEN. Unsupervised person re-identification based on self-distilled vision Transformer [J]. Journal of Computer Applications, 2024, 44(9): 2893-2902. |
[3] | Yubo ZHAO, Liping ZHANG, Sheng YAN, Min HOU, Mao GAO. Relation extraction between discipline knowledge entities based on improved piecewise convolutional neural network and knowledge distillation [J]. Journal of Computer Applications, 2024, 44(8): 2421-2429. |
[4] | Boshi ZOU, Ming YANG, Chenchen ZONG, Mingkun XIE, Shengjun HUANG. Robust learning method by reweighting examples with negative learning [J]. Journal of Computer Applications, 2024, 44(5): 1479-1484. |
[5] | Wangjun SHI, Jing WANG, Xiaojun NING, Youfang LIN. Sleep stage classification model by meta transfer learning in few-shot scenarios [J]. Journal of Computer Applications, 2024, 44(5): 1445-1451. |
[6] | Xue LI, Guangle YAO, Honghui WANG, Jun LI, Haoran ZHOU, Shaoze YE. Remote sensing image classification based on sample incremental learning [J]. Journal of Computer Applications, 2024, 44(3): 732-736. |
[7] | Xujian ZHAO, Hanglin LI. Deep neural network compression algorithm based on hybrid mechanism [J]. Journal of Computer Applications, 2023, 43(9): 2686-2691. |
[8] | Zhangjian JI, Ming ZHANG, Zilong WANG. High-precision object detection algorithm based on improved VarifocalNet [J]. Journal of Computer Applications, 2023, 43(7): 2147-2154. |
[9] | Chunhao CAI, Jianliang LI. Model distillation model based on training weak teacher networks about few-shots [J]. Journal of Computer Applications, 2022, 42(9): 2652-2658. |
[10] | Huaiqing HE, Jianqing YAN, Kanghua HUI. Lightweight face recognition method based on deep residual network [J]. Journal of Computer Applications, 2022, 42(7): 2030-2036. |
[11] | Wei REN, Hexiang BAI. Multi-label image classification method based on global and local label relationship [J]. Journal of Computer Applications, 2022, 42(5): 1383-1390. |
[12] | Junhua GU, Shuai FAN, Ningning LI, Suqi ZHANG. Long- and short-term recommendation model and updating method based on knowledge graph preference attention network [J]. Journal of Computer Applications, 2022, 42(4): 1079-1086. |
[13] | Renjie XU, Baodi LIU, Kai ZHANG, Weifeng LIU. Model agnostic meta learning algorithm based on Bayesian weight function [J]. Journal of Computer Applications, 2022, 42(3): 708-712. |
[14] | ZHANG Cheng, WAN Yuan, QIANG Haopeng. Deep unsupervised discrete cross-modal hashing based on knowledge distillation [J]. Journal of Computer Applications, 2021, 41(9): 2523-2531. |
[15] | HUANG Jishuang, ZHANG Hua, LI Yonglong, ZHAO Hao, WANG Haoran, FENG Chuncheng. Hydraulic tunnel defect recognition method based on dynamic feature distillation [J]. Journal of Computer Applications, 2021, 41(8): 2358-2365. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||