[1] JI X, QIN N. A review of target detection classification and recognition method based on optical remote sensing image[J]. Journal of Shenyang Aerospace University, 2015, 32(1): 23-31.(姬晓飞,秦宁丽.基于光学遥感图像的目标检测与分类识别方法综述[J].沈阳航空航天大学学报,2015,32(1):23-31.) [2] CHEN Y. Research on segmentation and extraction in optical remote sensing image[D]. Hefei: University of Science and Technology of China, 2010.(陈雁. 可见光遥感图像分割与提取研究[D]. 合肥:中国科学技术大学, 2010.) [3] WANG Y, MA L, TIAN Y. State-of-the-art of ship detection and recognition in optical remotely sensed imagery[J]. Acta Automatica Sinica, 2011, 37(9): 1029-1039.(王彦情, 马雷, 田原. 光学遥感图像舰船目标检测与识别综述[J]. 自动化学报, 2011, 37(9): 1029-1039.) [4] HAN X, FU Y,LI G. Oil depots recognition based on improved Hough transform and graph search[J]. Journal of Electronics and Information Technology, 2011, 33(1): 66-72.(韩现伟, 付宜利, 李刚. 基于改进 Hough 变换和图搜索的油库目标识别[J]. 电子与信息学报, 2011, 33(1): 66-72.) [5] ZHANG Y. Object segmentation of remote sensing image based on MRF model[J]. Microcomputer and Its Applications, 2013, 32(2): 44-47.(张彦. 基于MRF模型的遥感图像建筑物分割研究[J]. 微型机与应用, 2013, 32(2): 44-47.) [6] YANG B, ZHAO H, ZHAO Z, et al.A removed texture classification and distinction algorithm of remoted sensing martial object[J]. Microelectronics and Computer, 2004, 21(9): 111-113.(杨斌,赵红漫,赵宗涛,等.一个改进的遥感图像目标纹理分类识别算法[J].微电子学与计算机,2004,21(9): 111-113.) [7] CHEN Z, LIU J, WANG G. A new circle targets extraction method from high resolution remote sensing imagery[C]// Proceedings of the 2011 4th International Workshop on Advanced Computational Intelligence. Piscataway: IEEE, 2011: 529-533. [8] LIU G, SUN X, FU K, et al.Aircraft recognition in high-resolution satellite images using coarse-to-fine shape prior[J]. Geoscience and Remote Sensing Letters, 2013, 10(3): 573-577. [9] HSIEH J, CHEN J, CHUANG C H, et al.Aircraft type recognition in satellite images[J]. IEE Proceedings: Vision, Image and Signal Processing, 2005, 152(3): 307-315. [10] ZHU C, ZHOU H, WANG R, et al.A novel hierarchical method of ship detection from spaceborne optical image based on shape and texture features[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(9): 3446-3456. [11] LI X, SUN H, WANG H, et al.High resolution imaging target detection for multi-class correlation vector machine[J]. Science of Surveying and Mapping, 2014, 39(12): 128-133.(李湘眷, 孙皓, 王洪伟, 等. 多核多类关联向量机的高分辨率影像目标检测[J]. 测绘科学, 2014, 39(12): 128-133.) [12] QU J, QU S, WANG Z. Feature-based fuzzy-neural network approach for target classification and recognition in remote sensing images[J]. Journal of Remote Sensing, 2009, 13(1): 67-74.(瞿继双, 瞿松柏, 王自杰. 基于特征的模糊神经网络遥感图像目标分类识别[J]. 遥感学报, 2009,13(1): 67-74.) [13] WANG D, HE X, WEI Z, et al.A method of aircraft image target recognition based on modified PCA features and SVM[C]// Proceedings of the 9th International Conference on Electronic Measurement and Instruments. Piscataway: IEEE, 2009: 177-181. [14] YIN F, JIAO L. Robust remote sensing image target recognition based on extending training set by rotation and sparse representation[J]. Pattern Recognition and Artificial Intelligence, 2012, 25(1): 89-95.(殷飞, 焦李成. 基于旋转扩展和稀疏表示的鲁棒遥感图像目标识别[J]. 模式识别与人工智能, 2012, 25(1): 89-95.) [15] XI Y. Research and implementation of K-mean clustering and watershed segmentation algorithm for remote sensing image[D]. Nanjing: Nanjing University of Science and Technology, 2011.(席英. 遥感图像的K-均值聚类和分水岭分割算法的研究与实现[D]. 南京: 南京理工大学,2011.) [16] YI L, ZHANG G, WU Z. A scale-synthesis method for high spatial resolution remote sensing image segmentation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(10): 4062-4070. [17] GAO X, ZHANG S. Theory method and application of image segmentation[D]. Changchun: Jilin University, 2006.(高秀娟, 张树功. 图像分割的理论, 方法及应用[D]. 长春: 吉林大学, 2006.) [18] LONG J, SHEN X, ZANG H, et al.An adaptive thresholding algorithm by background estimation in Gaussian scale space[J]. Acta Automatica Sinica, 2014, 40(8): 1773-1782.(龙建武, 申铉京, 臧慧, 等. 高斯尺度空间下估计背景的自适应阈值分割算法[J]. 自动化学报, 2014, 40(8): 1773-1782.) [19] SUN Y, CAI Z. An improved character segmentation algorithm based on local adaptive thresholding technique for Chinese NvShu documents[J]. Journal of Networks, 2014, 9(6): 1496-1501. [20] JAIN P, TYAGI V. An adaptive edge-preserving image denoising technique using tetrolet transforms[J]. Visual Computer, 2015,31(5): 657-674. [21] SAUVOLA J, PIETIKINEN M. Adaptive document image binarization[J]. Pattern Recognition, 2000, 33(2): 225-236. [22] LOWE D. Object recognition from local scale-invariant features[C]// Proceedings of the 7th IEEE International Conference on Computer Vision. Piscataway: IEEE, 1999: 1150-1157. [23] LOWE D. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110. [24] SHARMA G, CHAUDHURY S, SRIVASTAVA J. Bag-of-features kernel eigen spaces for classification[C]// Proceedings of the 19th International Conference on Pattern Recognition. Piscataway: IEEE, 2008: 1-4. [25] ARTHUR D, VASSILVITSKII S. k-means++: the advantages of careful seeding[C]// Proceedings of the 18th annual ACM-SIAM Symposium on Discrete Algorithms Society for Industrial and Applied Mathematics. New York: ACM, 2007: 1027-1035. [26] LAZEBNIK S, SCHMID C, PONCE J. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories[C]// Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2006: 2169-2178. [27] HUANG Q, WU G, CHEN J, et al.Automated remote sensing image classification method based on FCM and SVM[C]// Proceedings of the 2012 2nd International Conference on Remote Sensing, Environment and Transportation Engineering. Washington, DC: IEEE Computer Society, 2012: 1-4. [28] HE S, WANG L, XIA Y, et al.Insulator recognition based on moments invariant features and cascade AdaBoost classifier[C]// Proceedings of the 2013 International Conference on Mechatronics and Control Engineering. Zurich: Trans Tech Publications, 2013: 362-367. |