[1] 莫赞,盖彦蓉,樊冠龙.基于GAN-AdaBoost-DT不平衡分类算法的信用卡欺诈分类[J].计算机应用,2019,39(2):618-622. (MO Z, GAI Y R, FAN G L. Credit card fraud classification based on GAN-AdaBoost-DT imbalanced classification algorithm[J]. Journal of Computer Applications, 2019, 39(2):618-622.)
[2] MAZUROWSKI M A, HABAS P A, ZURADA J M, et al. Training neural network classifiers for medical decision making:the effects of imbalanced datasets on classification performance[J]. Neural Networks, 2008, 21(2/3):427-436.
[3] YANG Z, TANG W, SHINTEMIROV A, et al. Association rule mining-based dissolved gas analysis for fault diagnosis of power transformers[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 2009, 39(6):597-610.
[4] PUN J, LAWRYSHYN Y. Improving credit card fraud detection using a meta-classification strategy[J]. International Journal of Computer Applications, 2012, 56(10):41-46.
[5] 康松林,樊晓平,刘乐,等.ENN-ADASYN-SVM算法检测P2P僵尸网络的研究[J].小型微型计算机系统,2016,37(2):216-220. (KANG S L, FAN X P, LIU L, et al. Research on P2P botnets detection based on the ENN-ADASYN-SVM classification algorithm[J]. Journal of Chinese Computer Systems, 2016, 37(2):216-220.)
[6] BERMEJO P, GAMEZ J A, PUERTA J M. Improving the performance of Naive Bayes multinomial in e-mail foldering by introducing distribution-based balance of datasets[J]. Expert Systems with Applications, 2011, 38(3):2072-2080.
[7] CHAWLA N V, BOWYER K W, HALL L O, et al. SMOTE:synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002, 16(1):321-357.
[8] HE H, BAI Y, GARCIA E A, et al. ADASYN:adaptive synthetic sampling approach for imbalanced learning[C]//Proceedings of the 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence). Piscataway, NJ:IEEE, 2008:1322-1328.
[9] HAN H, WANG W Y, MAO B H. Borderline-SMOTE:a new over-sampling method in imbalanced data sets learning[C]//Proceedings of the 2005 International Conference on Intelligent Computing, LNCS 3644. Berlin:Springer, 2005:878-887.
[10] CASTRO C L, BRAGA A P. Novel cost-sensitive approach to improve the multilayer perceptron performance on imbalanced data[J]. IEEE Transactions on Neural Networks and Learning Systems, 2013, 24(6):888-899.
[11] 李勇,刘占东,张海军.不平衡数据的集成分类算法综述[J].计算机应用研究,2014,31(5):1287-1291.(LI Y, LIU Z D, ZHANG H J. Review on ensemble algorithms for imbalanced data classification[J]. Application Research of Computers, 2014,31(5):1287-1291.)
[12] GALAR M, FERNANDEZ A, BARRENECHEA E, et al. A review on ensembles for the class imbalance problem:bagging-, boosting-, and hybrid-based approaches[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 2012, 42(4):463-484.
[13] SEIFFERT C, KHOSHGOFTAAR T M, van HULSE J, et al. RUSBoost:a hybrid approach to alleviating class imbalance[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part A:Systems and Humans, 2010, 40(1):185-197.
[14] CHAWLA N V, LAZAREVIC A, HALL L O, et al. SMOTEBoost:improving prediction of the minority class in boosting[C]//Proceedings of the 2003 European Conference on Principles of Data Mining and Knowledge Discovery, LNCS 2838. Berlin:Springer, 2003:107-119.
[15] FREUND Y, SCHAPIRE R E. A decision-theoretic generalization of on-line learning and an application to boosting[J]. Journal of Computer and System Sciences, 1997, 55(1):119-139.
[16] KANG Q, CHEN X S, LI S S, et al. A noise-filtered under-sampling scheme for imbalanced classification[J]. IEEE Transactions on Cybernetics, 2017, 47(12):4263-4274.
[17] 周志华. 机器学习[M]. 北京:清华大学出版社, 2016:33-35.(ZHOU Z H. Machine Learning[M]. Beijing:Tsinghua University Press, 2016:33-35.)
[18] 王伟,谢耀滨,尹青.针对不平衡数据的决策树改进方法[J]. 计算机应用,2019,39(3):623-628.(WANG W, XIE Y B, YIN Q. Decision tree improvement method for imbalanced data[J]. Journal of Computer Applications, 2019, 39(3):623-628.) |