Journal of Computer Applications ›› 2016, Vol. 36 ›› Issue (7): 1899-1903.DOI: 10.11772/j.issn.1001-9081.2016.07.1899

Previous Articles     Next Articles

Web spam detection based on immune clonal feature selection and under-sampling ensemble

LU Xiaoyong1, CHEN Musheng2, WU Jhenglong3, CHANG Peichan3   

  1. 1. School of Software, Nanchang University, Nanchang Jiangxi 330047, China;
    2. Information Engineering School, Nanchang University, Nanchang Jiangxi 330031, China;
    3. College of Informatics, Yuan Ze University, Taoyuan Taiwan 32003, China
  • Received:2016-01-08 Revised:2016-03-02 Online:2016-07-10 Published:2016-07-14
  • Supported by:
    This work is partially supported by the Sciences and Technology Support Program of Jiangxi Province (20131102040039).

基于免疫克隆特征选择和欠采样集成的垃圾网页检测

卢晓勇1, 陈木生2, 吴政隆3, 张百栈3   

  1. 1. 南昌大学 软件学院, 南昌 330047;
    2. 南昌大学 信息工程学院, 南昌 330031;
    3. 元智大学 资讯学院, 台湾 桃园 32003
  • 通讯作者: 陈木生
  • 作者简介:卢晓勇(1957-),男,江西高安人,教授,博士,主要研究方向:信息管理与信息系统、工业工程;陈木生(1977-),男,江西于都人,博士研究生,主要研究方向:数据挖掘、知识发现;吴政隆(1983-),男,台湾宜兰人,博士,主要研究方向:智能优化、文本挖掘;张百栈(1959-),男,台湾高雄人,教授,博士,主要研究方向:生产排程、智能优化。
  • 基金资助:
    江西省科技支撑计划项目(20131102040039)。

Abstract: To solve the problem of "curse of dimensionality" and imbalance classification, a binary classifier algorithm based on immune clonal feature selection and Under-Sampling (US) ensemble was proposed to detect Web spam. Firstly, major samples in training dataset were sampled into several sample subsets, which were combined with minor samples to generate several balanced training sample subsets. Then an immune clonal algorithm was proposed to select several optimal feature subsets. The balanced training subsets were projected to multiple views based on the optimal feature subsets. Finally, several Random Forest (RF) classifiers were trained by these views of the training sample subsets to classify the testing samples. The testing samples' classifications were determined by voting. The experimental results on the WEBSPAM UK-2006 dataset show that the ensemble classifier algorithm outperforms these algorithms like RF, Bagging with RF and AdaBoost with RF, and its accuracy, F1-Measure, AUC (Area Under ROC Curve) are increased by more than 11% respectively. Compared with several state-of-the-art baseline classification models, the F1-Measure is increased by 2% and the AUC reaches the optimum result using the ensemble classifier.

Key words: Web spam detection, ensemble learning, immune clonal algorithm, feature selection, Under-Sampling (US), Random Forest (RF)

摘要: 为解决垃圾网页检测过程中的“维数灾难”和不平衡分类问题,提出一种基于免疫克隆特征选择和欠采样(US)集成的二元分类器算法。首先,使用欠采样技术将训练样本集大类抽样成多个与小类样本数相近的样本集,再将其分别与小类样本合并构成多个平衡的子训练样本集;然后,设计一种免疫克隆算法遴选出多个最优的特征子集;基于最优特征子集对平衡的子样本集进行投影操作,生成平衡数据集的多个视图;最后,用随机森林(RF)分类器对测试样本进行分类,采用简单投票法确定测试样本的最终类别。在WEBSPAM UK-2006数据集上的实验结果表明,该集成分类器算法应用于垃圾网页检测:与随机森林算法及其Bagging和AdaBoost集成分类器算法相比,准确率、F1测度、AUC等指标均提高11%以上;与其他最优的研究结果相比,该集成分类器算法在F1测度上提高2%,在AUC上达到最优。

关键词: 垃圾网页检测, 集成学习, 免疫克隆算法, 特征选择, 欠采样, 随机森林

CLC Number: