[1] OJALA T,PIETIKÄINEN M,MÄENPÄ T.Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(7):971-987. [2] LIU G-H,LI Z-Y,ZHANG L,et al.Image retrieval based on micro-structure descriptor[J].Pattern Recognition,2011,44(9):2123-2133. [3] FENG L,WU J,LIU S,et al.Global correlation descriptor:a novel image representation for image retrieval[J].Journal of Visual Communication and Image Representation,2015,33:104-114. [4] FENG L,LIU S-L,WU Z-Y,et al.Maximal similarity embedding[J].Neurocomputing,2013,99:423-438. [5] JOLLIFFE I T.Principal Component Analysis[M].New York:Springer-Verlag,1986:10-28. [6] SUN J,CROWE M,FYFE C.Extending metric multidimensional scaling with Bregman divergences[J].Pattern Recognition,2011,44(5):1137-1154. [7] ROWEIS S T,SAUL L K.Nonlinear dimensionality reduction by locally linear embedding[J].Science,2000,290(5500):2323-2326. [8] ZHANG Z,ZHA H.Principal manifolds and nonlinear dimensionality reduction via Tangent space alignment[J].Journal of Shanghai University (English Edition),2004,8(4):406-424. [9] TENENBAUM J B,DE SILVA V,LANGFORD J C.A global geometric framework for nonlinear dimensionality reduction[J].Science,2000,290(5500):2319-2323. [10] BALASUBRAMANIAN M,SCHWARTZ E L.The isomap algorithm and topological stability[J].Science,2002,295(5552):7. [11] SAXENA A,GUPTA A,MUKERJEE A.Non-linear dimensionality reduction by locally linear isomaps[C]//ICONIP 2004:Proceedings of the 11th International Conference on Neural Information Processing,LNCS 3316.Berlin:Springer-Verlag,2004:1038-1043. [12] BELKIN M,NIYOGI P.Laplacian eigenmaps for dimensionality reduction and data representation[J].Neural Computation,2003,15(6):1373-1396. [13] HE X,NIYOGI P.Locality preserving projections[C]//Advances in Neural Information Processing Systems 16.Cambridge,MA:MIT Press,2004:153.[BP (]http://www.iipl.fudan.sh.cn/~zhangjp/literatures/MLF/TR-2002-09.pdf [14] HE X,CAI D,YAN S,et al.Neighborhood preserving embedding[C]//ICCV 2005:Proceedings of the Tenth IEEE International Conference on Computer Vision.Washington,DC:IEEE Computer Society,2005:1208-1213. [15] KOKIOPOULOU E,SAAD Y.Orthogonal neighborhood preserving projections[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,29(12):2143-2156.[BP (]ICDM'05:Proceedings of the Fifth IEEE International Conference on Data Mining.https://infoscience.epfl.ch/record/87294/files/Kokiopoulou2005_1351.pdf Pages 234-241 [16] ZHANG T,YANG J,ZHAO D,et al.Linear local tangent space alignment and application to face recognition[J].Neurocomputing,2007,70(7/8/9):1547-1553. [17] DE LA TORRE F,BLACK M J.Robust principal component analysis for computer vision[C]//ICCV 2001:Proceedings of the Eighth IEEE International Conference on Computer Vision.Washington,DC:IEEE Computer Society,2001,1:362-369. [18] CHOULAKIAN V.L1-norm projection pursuit principal component analysis[J].Computational Statistics&Data Analysis,2006,50(6):1441-1451. [19] SCHÖLKOPF B,SMOLA A,MVLLER K-R.Kernel principalcomponent analysis[C]//ICANN'97:Proceedings of the 7th International Conference on Artificial Neural Networks,LNCS 1327.Berlin:Springer-Verlag,1997:583-588. [20] SCHÖLKOPF B,SMOLA A,MVLLER K-R.Nonlinear component analysis as a kernel eigenvalue problem[J].Neural Computation,1998,10(5):1299-1319. [21] YANG J,ZHANG D,YANG J-Y.Locally principal componentlearning for face representation and recognition[J].Neurocomputing,2006,69(13/14/15):1697-1701. [22] 刘胜蓝,闫德勤.一种新的全局嵌入降维算法[J].自动化学报,2011,37(7):828-835.(LIU S L,YAN D Q.A new global embedding algorithm[J].Acta Automatica Sinica,2011,37(5):828-835.) [23] AGGARWAL C C,YU P S.Outlier detection for high dimensional data[J].ACM Sigmod Record,2001,30(2):37-46. [24] YAN D,LIU S.An angle optimized global embedding algorithm[C]//FSKD 2010:Proceedings of the Seventh International Conference on Fuzzy Systems and Knowledge Discovery.Piscataway,NJ:IEEE,2010,4:1843-1847. |