[1] WANG X, SHEN S, NING C, et al. Multi-class remote sensing objects recognition based on discriminative sparse representation[J]. Applied Optics, 2016, 55(6):1381-1394. [2] WANG X, XIONG X, NING C, et al. Integration of heterogeneous features for remote sensing scene classification[J]. Journal of Applied Remote Sensing, 2018, 12(1):015023. [3] NING C, LIU W, ZHANG G, et al. Enhanced synthetic aperture radar automatic target recognition method based on novel features[J]. Applied Optics, 2016, 55(31):8893-8904. [4] SIRMACEK B, UNSALAN C. Urban-area and building detection using SIFT keypoints and graph theory[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(4):1156-1167. [5] TUERMER S, KURZ F, REINARTZ P, et al. Airborne vehicle detection in dense urban areas using HoG features and disparity maps[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2013, 6(6):2327-2337. [6] CHEN C, ZHANG B, SU H, et al. Land-use scene classification using multi-scale completed local binary patterns[J]. Signal, Image & Video Processing, 2016, 10(4):745-752. [7] DENG J, DONG W, SOCHER R, et al. ImageNet:a large-scale hierarchical image database[C]//Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE, 2009:248-255. [8] HINTON G E, OSINDERO S, TEH Y-W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7):1527-1554. [9] 刘大伟,韩玲,韩晓勇.基于深度学习的高分辨率遥感影像分类研究[J].光学学报, 2016, 36(4):0428001. (LIU D W, HAN L, HAN X Y. High spatial resolution remote sensing image classification based on deep learning[J]. Acta Optica Sinica, 2016, 36(4):0428001.) [10] 曲景影,孙显,高鑫.基于CNN模型的高分辨率遥感图像目标识别[J].国外电子测量技术,2016,35(8):45-50. (QU J Y, SUN X, GAO X. Remote sensing image target recognition based on CNN[J]. Foreign Electronic Measurement Technology, 2016, 35(8):45-50.) [11] 周敏,史振威,丁火平.遥感图像飞机目标分类的卷积神经网络方法[J].中国图象图形学报,2017,22(5):702-708. (ZHOU M, SHI Z W, DING H P. Aircraft classification in remote-sensing images using convolutional neural networks[J]. Journal of Image and Graphics, 2017, 22(5):702-708.) [12] 黄洁,姜志国,张浩鹏,等.基于卷积神经网络的遥感图像舰船目标检测[J].北京航空航天大学学报,2017,43(09):1841-1848. (HUANG J, JIANG Z G, ZHANG H P,et al. Ship object detection in remote sensing images using convolutional neural networks[J]. Journal of Beijing University of Aeronautics and Astronsutics, 2017, 43(9):1841-1848.) [13] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11):2278-2324. [14] GAO L, CHEN P-Y, YU S. Demonstration of convolution kernel operation on resistive cross-point array[J]. IEEE Electron Device Letters, 2016, 37(7):870-873. [15] GIRSHICK R, IANDOLAA F, DARRELL T, et al. Deformable part models are convolutional neural networks[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2015:437-446. [16] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. Lake Tahoe, NV:Curran Associates Inc., 2012:1097-1105. [17] HINTON G E. How neural networks learn from experience[J]. Scientific American, 1992, 267(3):145-151. [18] BOUVRIE J. Notes on convolutional neural networks[EB/OL].[2018-04-18]. http://cogprints.org/5869/. [19] RUMELHART D E, HINTON G E, WILLAMS R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323(6088):533-536. [20] HOTELLING H. Analysis of a complex of statistical variables into principal components[J]. Journal of Educational Psychology, 1933, 24(6):417-520. |