[1] 尚文利, 安攀峰, 万明, 等.工业控制系统入侵检测技术的研究及发展综述[J]. 计算机应用研究, 2017, 34(2):328-330. (SHANG W L, AN P F, WAN M, et al. A survey of the research and development of industrial control system intrusion detection technology[J]. Application Research of Computers, 2017, 34(2):328-330.) [2] 杨安, 孙利民, 王小山, 等.工业控制系统入侵检测技术综述[J]. 计算机研究与发展, 2016, 53(9):2039-2054. (YANG A, SUN L M, WANG X S, et al. Industrial control system intrusion detection technology overview[J]. Computer Research and Development, 2016, 53(9):2039-2054.) [3] 李洋. K-means聚类算法在入侵检测中的应用[J]. 计算机工程, 2007, 33(14):154-156. (LI Y. Application of K-means clustering algorithm in intrusion detection[J]. Computer Engineering, 2007, 33(14):154-156.) [4] 刘万军, 秦济韬, 曲海成, 等.基于改进单类支持向量机的工业控制网络入侵检测[J]. 计算机应用, 2017, 26(12):1-5. (LIU W J, QIN J T, QU H C, et al. Industrial control network intrusion detection method based on improved single-class support vector machin[J]. Journal of Computer Applications, 2017, 26(12):1-5.) [5] PARVANIA M, KOUTSANDRIA G, MUTHUKUMAR V, et al. Hybrid control network intrusion detection systems for automated power distribution systems[C]//Proceedings of the 2014 IEEE/IFIP International Conference on Dependable Systems and Networks. Washington, DC:IEEE Computer Society, 2014:774-779. [6] 梁辰, 李成海, 周来恩.PCA-BP神经网络入侵检测方法[J]. 空军工程大学学报, 2016, 32(6):93-96. (LIANG C, LI C H, ZHOU L E. PCA-BP neural network intrusion detection method[J]. Journal of Air Force Engineering University, 2016, 32(6):93-96.) [7] 陈万志, 李东哲.结合白名单过滤和神经网络的工业控制网络入侵检测方法[J]. 计算机应用, 2018, 38(2):363-369. (CHEN W Z, LI D Z. Industrial control network intrusion detection method combining white list filtering and neural network[J]. Journal of Computer Applications, 2018, 38(2):363-369.) [8] 陈万志, 唐雨, 张静.工业控制网络异常通信检测的改进鱼群算法优化方法[J]. 计算机应用研究, 2018, 36(8):323-328. (CHEN W Z, TANG Y, ZHANG J. Improved fish school algorithm optimization method for abnormal communication detection in industrial control networks[J]. Application Research of Computers, 2018, 36(8):323-328.) [9] LEE C B, ROEDEL C, SILENOK E. Detection and characterization of port scan attacks[J]. Key Engineering Materials, 2014, 602/603(3):93-96. [10] 陈冬青, 张普含, 王华忠.基于MIKPSO-SVM方法的工业控制系统入侵检测[J]. 清华大学学报(自然科学版), 2018, 58(4):380-386. (CHEN D Q, ZHANG P H, WANG H Z. Intrusion detection of industrial control systems based on MIKPSO-SVM method[J]. Journal of Tsinghua University (Science and Technology), 2018, 58(4):380-386.) [11] 周炜奔, 石跃祥.基于密度的K-means聚类中心选取的优化算法[J]. 计算机应用研究, 2012, 29(5):1726-1728. (ZHOU W B, SHI Y X. Density-based K-means clustering center selection algorithm[J]. Application Research of Computers, 2012, 29(5):1726-1728.) [12] BISHOP M, GATES C. Defining the insider threat[EB/OL].[2018-05-10]. https://escholarship.org/uc/item/1qm187cg. [13] 马占飞, 陈虎年, 杨晋, 等.一种基于IPSO-SVM算法的网络入侵检测方法[J]. 计算机科学, 2018, 45(2):231-235. (MA Z F, CHEN H N, YANG J, et al. A network intrusion detection method based on IPSO-SVM algorithm[J]. Computer Science, 2018, 45(2):231-235.) [14] 王晓燕. K-均值算法与自组织神经网络算法的改进研究及应用[D]. 太原:中北大学, 2017:65-66. (WANG X Y. Research and application of K-means algorithm and self-organizing neural network algorithm[D]. Taiyuan:North University of China, 2017:65-66.) [15] 牛雷, 孙忠林.PCA-AKM算法及其在入侵检测中的应用[J]. 计算机科学, 2018, 45(2):226-229. (NIU L, SUN Z L. PCA-AKM algorithm and its application in intrusion detection[J]. Computer Science, 2018, 45(2):226-229.) |