[1] 李准,杨慧民,林春.南昌地区雷电灾害易损性分析及区划[J].气象研究与应用,2013,34(3):78-82.(LI Z, YANG H M, LIN C. Regionalization and analysis of lighting disaster vulnerability in Nanchang [J]. Journal of Meteorological Research and Application, 2013, 34(3): 78-82.) [2] 吕振东,李玉塔,王怀清.江西省雷电时空分布特征及其区域易损性分析[J].能源研究与管理,2016(1):51-57.(LYU Z D, LI Y T, WANG H Q. Analysis of temporal and spatial distribution characteristics of lighting activity and vulnerability in Jiangxi [J]. Energy Research and Management, 2016(1): 51-57.) [3] 靳小兵,卜俊伟,李一丁,等.四川省雷电监测预警预报系统及其应用研究[J].高原山地气象研究,2012,32(3):54-57.(JIN X B, BU J W, LI Y D, et al. The research of lightning monitoring and early warning forecast system of Sichuan province and its application [J]. Plateau and Mountain Meteorology Research, 2012, 32(3): 54-57.) [4] 刘达新,来志云,吉平,等.能抵抗粗差的雷电定位算法研究与仿真[J].科学技术与工程,2013,13(28):8399-8403.(LIU D X, LAI Z Y, JI P, et al. Algorithms and simulation for robust lightning location [J]. Science Technology and Engineering, 2013, 13(28): 8399-8043.) [5] 刘冲,李向军,沈华,等.基于基数排序及属性约简的雷电预报因子提取方法[J].南昌大学学报(理科版),2013,37(4):344-349.(LIU C, LI X J, SHENG H, et al. Extraction method of lightning forecast factors based on radix sort and attribute reduction [J]. Journal of Nanchang University (Natural Science), 2013, 37(4): 344-349.) [6] 彭永供,邱桃荣,林于渊,等.基于哈夫曼树的雷电数据采样算法[J].计算机工程,2013,39(5):174-177.(PENG Y G, QIU T R, LIN Y Y, et al. Lightning data sampling algorithm based on Huffman tree [J]. Computer Engineering, 2013, 39(5): 174-177.) [7] 滕少华,樊继慧,陈潇,等.SVM多分类器协同挖掘局域气象数据[J].广西大学学报(自然科学版),2014,39(5):1131-1137.(TENG S H, FAN J H, CHEN X, et al. Application of SVM-based multi-classifiers in miningcooperatively local area meteorological data [J]. Journal of Guanxi University (Natural Science Edition), 2014, 39(5): 1131-1137.) [8] 周浩,刘萍,邱桃荣,等.基于粒计算的决策树并行算法的应用[J].计算机工程与设计,2015,36(6):1504-1509.(ZHOU H, LIU P, QIU T R, et al. Parallel decision tree algorithm based on granular computing [J]. Computer Engineering and Design, 2015, 36(6): 1504-1509.) [9] VALIANT L G. A theory of the learnable [J]. Communications of the ACM, 1984, 27(11): 1134-1142. [10] NAKAMURA M, NOMIYA H, UEHARA K. Improvement of boosting algorithm by modifying the weighting rule [J]. Annals of Mathematics and Artificial Intelligence, 2004, 41(1): 95-109. [11] LOZANO A C, ABE N. Multi-class cost-sensitive boosting with p-norm loss functions [C]// KDD '08: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2008: 506-514. [12] 廖红文,周德龙.AdaBoost及其改进算法综述[J].计算机系统应用,2012,21(5):240-244.(LIAO H W, ZHOU D L. Review of AdaBoost and its improvement [J]. Computer System and Applications, 2012, 21(5): 240-244.) [13] 刘宏杰,冯博琴,李文捷,等.粗糙集属性约简判别分析方法及其应用[J].西安交通大学学报,2007,41(8):939-943.(LIU H J, FENG B Q, LI W J, et al. Discrimination method of rough set attribute reduction and its applications [J]. Journal of Xi'an JiaoTong University, 2007, 41(8): 939-943.) [14] PAWLAK Z. Rough sets [J]. International Journal of Computer and Information Sciences, 1982, 11(5): 341-356. |