[1] CHEN P, TOYOTA T, HE Z. Automated function generation of symptom parameters and application to fault diagnosis of machinery under variable operating conditions[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans, 2001, 31(6):775-781. [2] 苏祖强, 汤宝平, 姚金宝. 基于敏感特征选择与流行学习维数约简的故障诊断[J]. 振动与冲击, 2014, 33(3):70-75.(SU Z Q, TANG B P, YAO J B. Fault diagnosis method based on sensitive feature selection and manifold learning dimension reduction[J]. Journal of Vibration and Shock, 2014, 33(3):70-75.) [3] 杨宇, 潘海洋, 程军圣. 基于特征选择和RRVPMCD的滚动轴承故障诊断[J]. 振动工程学报, 2014, 27(4):629-636.(YANG Y, PAN H Y, CHENG J S. The rolling bearing fault diagnosis method based on the feature selection and RRVPMCD[J]. Journal of Vibration Engineering, 2014, 27(4):629-636. [4] PENG H, LONG F, DING C. Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(8): 1226-1238. [5] ZHAO X M. Data-driven fault detection, isolation and identification of rotating machinery: with applications to pumps and gearboxes[D]. Edmonton: University of Alberta, 2012. [6] 古莹奎, 承姿辛, 朱繁泷. 基于主成分分析和支持向量机的滚动轴承故障特征融合分析[J]. 中国机械工程, 2015, 26(20):2778-2783.(GU Y K, CHENG Z X, ZHU F L. Rolling bearing fault feature fusion based on PCA and SVM[J]. China Mechanical Engineering, 2015, 26(20):2778-2783.) [7] 巫茜, 蔡海尼, 黄丽丰. 基于主成分分析的多源特征融合故障诊断方法[J]. 计算机科学, 2011, 38(1):268-270(WU Q, CAI H N, HUANG L F. Feature-level fusion fault diagnosis based on PCA[J]. Computer Science, 2011, 38(1):268-270.) [8] 李学军, 李平, 蒋玲莉, 等. 基于异类信息特征融合的异步电机故障诊断[J]. 仪器仪表学报, 2013, 34(1):227-233.(LI X J, LI P, JIANG L L, et al. Fault diagnosis method of asynchronous motor based on heterogeneous information feature fusion[J]. Chinese Journal of Scientific Instrument, 2013, 34(1):227-233.) [9] 刘颖慧, 刘树林, 唐友福, 等. 基于斜率关联度的模式识别方法及滚动轴承故障诊断应用[J]. 机械科学与技术, 2012, 31(9):1500-1503.(LIU Y H, LIU S L, TANG Y F, et al. A method of pattern recognition with slope relational degree and its application to rolling bearing fault diagnosis[J]. Mechanical Science and Technology, 2012, 31(9):1500-1503.) [10] 程军圣, 史美丽, 杨宇.基于LMD与神经网络的滚动轴承故障诊断方法[J]. 振动与冲击, 2010, 29(8):141-144.(CHENG J S, SHI M L, YANG Y. Roller bearing fault diagnosis method based on LMD and neural network[J]. Journal of Vibration and Shock, 2010, 29(8):141-144.) [11] 杨宇, 于德介, 程军圣.基于经验模态分解包络谱的滚动轴承故障诊断方法[J]. 中国机械工程, 2004, 15(16):1469-1471.(YANG Y, YU D J, CHENG J S. A fault diagnosis approach for roller bearings based on EMD and envelop spectrum[J]. China Mechanical Engineering, 2004, 15(16): 1469-1471.) [12] 胡耀斌, 厉善元, 胡良斌.基于神经网络的滚动轴承故障诊断方法的研究[J]. 机械设计与制造, 2012(2):187-189.(HU Y B, LI S Y, HU L B. Fault diagnosis of rolling bearing based on neural network[J]. Machinery Design & Manufacture, 2012(2): 187-189.) [13] 张键. 机械故障诊断技术[M]. 北京:机械工业出版社, 2015:60-63.(ZHANG J. Mechanical Fault Diagnosis Technology[M]. Beijing: China Machine Press, 2015:60-63.) |