[1] 邵维志, 解经宇, 迟秀荣, 等.低孔隙度低渗透率岩石孔隙度与渗透率关系研究[J]. 测井技术, 2013, 37(2): 149-153. (SHAO W Z, XIE J Y, CHI X R, et al. On the relation of porosity and permeability in low porosity and low permeability rock [J]. Well Logging Technology, 2013, 37(2): 149-153.) [2] PETROBRAS T W, PETROBRAS C B, PETROBRAS N P, et al. Magnetic Resonance (NMR) approach for permeability estimation in carbonate rocks [EB/OL]. [2017-01-10]. https://www.onepetro.org/conference-paper/OTC-26338-MS. [3] XIAO L, ZOU C C, MAO Z Q, et al. Tight-gas-sand permeability estimation from Nuclear-Magnetic-Resonance (NMR) logs based on the Hydraulic-Flow-Unit (HFU) approach [EB/OL]. [2017-01-10]. https://www.onepetro.org/journal-paper/SPE-167255-PA. [4] XIAO L, LIU X P, ZOU C C, et al. Comparative study of models for predicting permeability from Nuclear Magnetic Resonance (NMR) logs in two Chinese tight sandstone reservoirs [J]. Acta Geophysica, 2014, 62(1): 116-141. [5] RIOS E H, AZEREDO R B V, MOSS A K, et al. Estimating the permeability of carbonate rocks by principal component regressions of NMR and MICP data [C]//Proceedings of the SPWLA 56th Annual Logging Symposium. Long Beach, CA: [s.n.], 2015. [6] WEI D F, LIU X P, HU X X, et al. Estimation of permeability from NMR logs based on formation classification method in tight gas sands [J]. Acta Geophysica, 2015, 63(5): 1316-1338. [7] 成志刚, 罗少成, 杜支文, 等.基于储层孔喉特征参数计算致密砂岩渗透率的新方法[J]. 测井技术, 2014, 38(2): 185-189. (CHENG Z G, LUO S C, DU Z W, et al. The method to calculate tight sandstone reservoir permeability using pore throat characteristic parameters [J]. Well Logging Technology, 2014, 38(2): 185-189.) [8] RUSH D, LINDSAY C, ALLEN M. Combining electrical measurements and mercury porosimetry to predict permeability [J]. Petrophysics, 2013, 54(6): 531-537. [9] 朱林奇, 张冲, 何小菊, 等.基于动态孔隙结构效率的核磁共振测井预测渗透率方法[J]. 新疆石油地质, 2015, 36(5): 607-611. (ZHU L Q, ZHANG C, HE X J, et al. NMR logging permeability prediction method based on dynamic pore structure efficiency [J]. Xinjiang Petroleum Geology, 2015, 36(5): 607-611.) [10] 朱林奇, 张冲, 胡佳, 等.基于单元体模型的核磁共振测井渗透率评价方法[J]. 石油钻探技术, 2016, 44(5): 120-126. (ZHU L Q, ZHANG C, HU J, et al. An NMR logging permeability evaluation method based on the representative elementary volume model [J]. Petroleum Drilling Techniques, 2016, 44(5): 120-126.) [11] HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks [J]. Science, 2006, 313(5786): 504-507. [12] HINTON G E. Training products of experts by minimizing contrastive divergence [J]. Neural Computation, 2002, 14(8): 1771-1800. [13] HUANG G B, ZHOU H M, DING X J. Extreme learning machine for regression and multiclass classification [J]. IEEE Transactions on Systems, Man, and Cybernetics, 2013, 43(2): 513-529. [14] 江沸菠, 戴前伟, 董莉.基于主成分-正则化极限学习机的超高密度电法非线性反演[J]. 地球物理学报, 2015, 58(9): 3356-3369. (JIANG F B, DAI Q W, DONG L. Ultra-high density resistivity nonlinear inversion based on principal component-regularized ELM [J]. Chinese Journal of Geophysics, 2015, 58(9): 3356-3369.) |