[1] WANG Y, QIANG W, BO Y. A graphical model of smoking-induced global instability in lung cancer[J]. IEEE/ACM Transactions on Computational Biology & Bioinformatics,2018, 15(1):1-14. [2] CARTER B W, HALPENNY D F, GINSBERG M S, et al. Immunotherapy in non-small cell lung cancer treatment:current status and the role of imaging[J]. Journal of Thoracic Imaging, 2017,32(5):300-312. [3] PAING M P, CHOOMCHUAY S.A computer aided diagnosis system for detection of lung nodules from series of CT slices[C]//Proceedings of the 2017 International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology. Piscataway, NJ:IEEE, 2017:302-305. [4] NISHIO M, NAGASHIMA C. Computer-aided diagnosis for lung cancer:usefulness of nodule heterogeneity[J].Academic Radiology, 2017,24(3):328-336. [5] 胡强,郝晓燕,雷蕾.基于遗传算法和BP神经网络的孤立性肺结节分类算法[J].计算机科学,2016,43(S1):37-39,54.(HU Q, HAO X Y, LEI L. Segmentation algorithm of solitary pulmonary nodules based on genetic algorithm and BP neural network[J]. Computer Science, 2016,43(S1):37-39,54.) [6] 陈胜,张茗屋.胸部解剖结构回归模型的虚拟双能量X线减影方法[J].中国图象图形学报,2016,21(9):1247-1255.(CHEN S,ZHANG M W.A virtual dual-energy X-ray subtraction method for the reconstruction of chest anatomy[J].Journal of Image and Graphics, 2016,21(9):1247-1255.) [7] CAO C,LIU F,TAN H, et al. Deep learning and its applications in biomedicine[J].Genomics Proteomics & Bioinformatics, 2018,16(1):17-32. [8] WANG C Y,WANG J C,SANTOSO A, et al. Sound event recognition using auditory-receptive-field binary pattern and hierarchical-diving deep belief network[J].IEEE/ACM Transactions on Audio Speech & Language Processing,2018,26(8):1336-1351. [9] KHATAMI A, KHOSRAVI A, NGUYEN T, et al. Medical image analysis using wavelet transform and deep belief networks[J]. Expert Systems with Applications, 2017,86:190-198. [10] ABDEL-ZAHER A M,ELDEIB A M, et al. Breast cancer classification using deep belief networks[J].Expert Systems with Applications, 2016,46:139-144. [11] 王培良,夏春江.基于PCA-PDBNs的故障检测与自学习辨识[J].仪器仪表学报,2015,36(5):1147-1154.(WANG P L, XIA C J. Fault detection and self-learning identification based on PCA-PDBNs[J]. Chinese Journal of Scientific Instrument,2015,36(5):1147-1154.) [12] RAKESH S, MAHESH S. A comprehensive overview on variants of CUCKOO search algorithm and applications[C]//Proceedings of the 2017 International Conference on Electrical, Electronics, Communication, Computer, and Optimization Techniques. Piscataway, NJ:IEEE, 2018:1-5. [13] 张娟,蒋芸,胡学伟,等.基于快速持续对比散度的卷积受限玻尔兹曼机[J].计算机工程,2016,42(9):174-179.(ZHANG J,JIANG Y,HU X W, et al. Convolution-restricted Boltzmann machine based on rapid continuous contrast divergence[J].Computer Engineering, 2016, 42(9):174-179.) [14] HINTON G E.Training products of experts by minimizing contrastive divergence[J].Neural Computation,2002,14(8):1771-1800. [15] 黄敏丽,于艾清.基于改进布谷鸟算法的电动汽车换电站有序充电策略研究[J].中国电机工程学报,2018,38(4):1075-1083, 1284.(HUANG M L,YU A Q. Study on ordered charging strategy of electric vehicle substation based on improved cuckoo algorithm[J]. Proceedings of the Chinese Society for Electrical Engineering, 2018,38(4):1075-1083,1284.) [16] 陶涛,张俊,信昆仑,等.基于布谷鸟算法的给水管网调压阀优化设计[J].同济大学学报(自然科学版),2016,44(4):600-604,631.(TAO T, ZHANG J, XIN K L, et al. Optimization design of pressure regulating valve for water distribution network based on cuckoo algorithm[J]. Journal of Tongji University:Natural Science,2016, 44(4):600-604,631.) [17] 贾云璐,刘胜,宋颖慧.基于种群特征反馈的布谷鸟搜索算法[J].控制与决策,2016,31(6):969-975.(JIA Y L,LIU S,SONG Y H. Cuckoo search algorithm based on population feature feedback[J].Control and Decision,2016,31(6):969-975.) |