[1] 杨博,刘大有,金弟.复杂网络聚类方法[J].软件学报, 2009, 20(1):54-66.(YANG B, LIU D Y, JIN D. Clustering methods of complex networks[J]. Journal of Software, 2009, 20(1):54-66.) [2] 李慧嘉,严冠,刘志东,等.基于动态系统的网络社团线性探测算法[J].中国科学:数学, 2017, 47(2):241-256.(LI H J, YAN G, LIU Z D, et al. Linear community detection algorithm based on dynamic network system[J]. Science China:Mathematics, 2017, 47(2):241-256.) [3] FORTUNATO S. Community detection in graphs[J]. Physics Reports, 2010, 486(3):75-174. [4] JIA S W, GAO L, GAO Y, et al. Defining and identifying cograph communities in complex networks[J]. New Journal of Physics, 2015, 17(1):013044. [5] YANG L, CAO X C, HE D X, et al. Modularity based community detection with deep learning[C]//Proceedings of the 25th International Joint Conference on Artificial Intelligence. Menlo Park, CA:AAAI Press, 2016:2252-2258. [6] FANUEL M, ALAÍZ C M, SUYKENS J A. Magnetic eigenmaps for community detection in directed networks[J]. Physical Review E, 2016, 95(2):022302. [7] ANDREI B, KHLOPOTINE A, SATHANUR V J. Optimized parallel label propagation based community detection on the Intel(R) Xeon Phi(TM) architecture[C]//Proceedings of the 27th International Symposium on Computer Architecture and High Performance Computing. Piscataway, NJ:IEEE, 2016:9-16. [8] WANG S F, GONG M G, SHEN B, et al. Deep community detection based on memetic algorithm[C]//Proceedings of the 2015 IEEE Congress on Evolutionary Computation. Piscataway, NJ:IEEE, 2015:648-655. [9] 黄立威,李彩萍,张海粟,等.一种基于因子图模型的半监督社区发现方法[J].自动化学报, 2016, 42(10):1520-1531.(HUANG L W, LI C P, ZHANG H S, et al. A semi-supervised community detection method based on factor graph model[J]. Acta Automatica Sinica, 2016, 42(10):1520-1531.) [10] ZHANG H Y, ZHAO T, IRWIN K, et al. Modeling the homophily effect between links and communities for overlapping community detection[EB/OL].[2016-11-20]. http://www.ijcai.org/Proceedings/16/Papers/554.pdf. [11] JIN D, WANG H C, DANG J W, et al. Detect overlapping communities via modeling and ranking node popularities[C]//Proceedings of the 30th AAAI Conference on Artificial Intelligence. Menlo Park, CA:AAAI Press, 2016:172-178. [12] NEWMAN M E J. Communities, modules and large-scale structure in networks[J]. Nature Physics, 2012, 8(1):25-31. [13] EWMAN M E J, SLY A. Stochastic block models and reconstruction[EB/OL].[2016-11-20]. http://www.stat.berkeley.edu/~jneeman/monesl12.pdf. [14] DECELLE A, KRZAKALA F, MOORE C, et al. Asymptotic analysis of the stochastic block model for modular networks and its algorithmic applications[J]. Physical Review E:Statistical Nonlinear and Soft Matter Physics, 2011, 84(2):066106. [15] LANCICHINETTI A, RADICCHI F, RAMASCO J. Statistical significance of communities in networks[J]. Physical Review E:Statistical Nonlinear and Soft Matter Physics, 2010, 81(2):046110. [16] ABBE E, BANDEIRA A S, HALL G. Exact recovery in the stochastic block model[J]. IEEE Transactions on Information Theory, 2015, 62(1):471-487. [17] LAKEMEYER G, NEBEL B. Exploring Artificial Intelligence in the New Millennium[M]. San Francisco, CA:Morgan Kaufmann Publishers Inc, 2003:239. [18] STEINLEY D. Properties of the Hubert-Arable adjusted rand index[J]. Psychological Methods, 2004, 9(3):386-396. [19] DANON L, DIAZ G A, DUCH J, et al. Comparing community structure identification[EB/OL].[2016-11-20]. http://arxiv-web.arxiv.org/pdf/cond-mat/0505245. |