Journal of Computer Applications ›› 2018, Vol. 38 ›› Issue (1): 182-187.DOI: 10.11772/j.issn.1001-9081.2017071676

Previous Articles     Next Articles

k-CS algorithm: trajectory data privacy-preserving based on semantic location protection

HUO Zheng1, CUI Honglei2, HE Ping1   

  1. 1. School of Information Technology, Hebei University of Economics and Business, Shijiazhuang Hebei 050061, China;
    2. College of Business, Ningbo Institute of Technology, Zhejiang University, Ningbo Zhejiang 315100, China
  • Received:2017-07-06 Revised:2017-08-22 Online:2018-01-10 Published:2018-01-22
  • Supported by:
    This work is partially supported by the National Natural Science Foundation of China (61502279), the Natural Science Foundation of Hebei Province (F2015207009), the Scientific Research Projects in Colleges and Universities in Hebei Province (BJ2016019, QN2016179), the Soft Science Project of Ningbo City (2016A10066).

基于语义位置保护的轨迹隐私保护的k-CS算法

霍峥1, 崔洪雷2, 贺萍1   

  1. 1. 河北经贸大学 信息技术学院, 石家庄 050061;
    2. 浙江大学宁波理工学院 商学院, 浙江 宁波 315100
  • 通讯作者: 霍峥
  • 作者简介:霍峥(1982-),女,河北邯郸人,讲师,博士,CCF会员,主要研究方向:隐私保护、移动对象数据库;崔洪雷(1976-),女,辽宁沈阳人,讲师,博士,主要研究方向:大数据环境下的金融数据应用;贺萍(1982-),女,山东莱阳人,讲师,博士,主要研究方向:无线传感器网络、图优化算法。
  • 基金资助:
    国家自然科学基金资助项目(61502279);河北省自然科学基金资助项目(F2015207009);河北省高等学校科学技术研究项目(BJ2016019,QN2016179);宁波市软科学项目(2016A10066)。

Abstract: Since the data utility would be sharply reduced after privacy-preserving process and several attack models could not be resisted by traditional algorithms, such as, semantic location attacks and maximum moving speed attacks, a trajectory privacy-preserving algorithm based on semantic location preservation under road network constraints, called k-CS (k-Connected Sub-graph) algorithm, was proposed. Firstly, two attack models in road network space were proposed. Secondly, the privacy problem of semantic trajectory was defined as the k-CS anonymity problem, which was then proven NP-hard. Finally, an approximation algorithm was proposed to cluster nodes in the road network to construct anonymity zones, and semantic locations were replaced with the corresponding anonymity zones. Experiments were implemented to compare the proposed algorithm with the classical algorithm, called (k,δ)-anonymity. The experimental results show that, the k-CS algorithm performs better than (k,δ)-anonymity algorithm in data utility, query error and runtime. Specifically, k-CS algorithm reduces about 20% in information loss than (k,δ)-anonymity, and k-CS algorithm deceased about 10% in runtime than (k,δ)-anonymity algorithm.

Key words: road network, privacy-preserving, trajectory data, semantic location, clustering

摘要: 针对轨迹数据隐私保护算法数据可用性低及易受语义位置攻击和最大运行速度攻击等问题,提出了一种在路网环境中基于语义轨迹的隐私保护算法——k-CS算法。首先,提出了两种路网环境中针对轨迹数据的攻击模型;然后,将路网环境中基于语义轨迹的隐私问题定义为k-CS匿名问题,并证明了该问题是一个NP难问题;最后,提出了一种基于图上顶点聚类的近似算法将图上的顶点进行匿名,将语义位置由相应的匿名区域取代。实验对所提算法和轨迹隐私保护经典算法(k,δ)-anonymity进行了对比,实验结果表明:k-CS算法在数据可用性、查询误差率、运行时间等方面优于(k,δ)-anonymity算法;平均信息丢失率比(k,δ)-anonymity算法降低了20%左右;算法运行时间比(k,δ)-anonymity算法减少近10%。

关键词: 路网, 隐私保护, 轨迹数据, 语义位置, 聚类

CLC Number: