[1] GUO H, LI Y, SHANG J, et al. Learning from class-imbalanced data:review of methods and applications[J]. Expert Systems with Applications, 2017, 73:220-239. [2] LIN W, TSAI C, HU Y, et al. Clustering-based undersampling in class-imbalanced data[J]. Information Sciences, 2017, 409:17-26. [3] SANZ J, BERNARDO A D, HERRERA F, et al. A compact evolutionary interval-valued fuzzy rule-based classification system for the modeling and prediction of real-world financial applications with imbalanced data[J]. IEEE Transactions on Fuzzy Systems, 2015, 23(4):973-990. [4] CHAWLA N, JAKOWICZ V N, KOTCZ A. Editorial:special issue on learning from imbalanced data sets[J]. ACM Special Interest Group on Knowledge Discovery and Data Mining Explorations, 2004, 6(1):1-6. [5] 郭华平, 董亚东, 毛海涛, 等. 一种基于逻辑判别式的稀有类分类方法[J]. 小型微型计算机系统, 2016, 37(1):140-145.(GUO H P, DONG Y D, MAO H T, et al. Logistic discrimination based rare-class classification method[J]. Journal of Chinese Computer Systems, 2016, 37(1):140-145.) [6] SUN Y, WONG A K C, KAMEL M S. Classification of imbalanced data:a review[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2009, 23(4):687-719. [7] TAHIR M A, KITTLER J, MIKOLAJCZYK K, et al. A multiple expert approach to the class imbalance problem using inverse random under sampling[C]//Proceedings of 8th International Workshop on Multiple Classifier Systems. Berlin:Springer, 2009:82-91. [8] CHAWLA N V, BOWYER K W, HALL L O, et al. SMOTE:synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002, 16:321-357. [9] LIU X, WU J, ZHOU Z. Exploratory undersampling for class-imbalance learning[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B, 2009, 39(2):539-550. [10] LI P, QIAO P, LIU Y. A hybrid re-sampling method for SVM learning from imbalanced data sets[C]//FSKD 2008:Proceedings of the Fifth International Conference on Fuzzy Systems and Knowledge Discovery. Washington, DC:IEEE Computer Society,2008:65-69. [11] WANG B X, JAPKOWICZ N. Boosting support vector machines for imbalanced data sets[J]. Knowledge and Information Systems, 2010, 25(1):1-20. [12] ZHANG Y, FU P, LIU W, et al. Imbalanced data classification based on scaling kernel-based support vector machine[J]. Neural Computing and Applications, 2014, 25(3/4):927-935. [13] GUO H, LIU H, WU C, et al. Logistic discrimination based on G-mean and F-measure for imbalanced problem[J]. Journal of Intelligent and Fuzzy Systems, 2016, 31(3):1155-1166. [14] ALCALA-FDEZ J, FERNANDEZ A, LUENGO J, et al. KEEL data-mining software tool:data set repository, integration of algorithms and experimental analysis framework[J]. Journal of Multiple-Valued Logic and Soft Computing, 2011, 17(2/3):255-287. [15] OLIVEIRA G V, COUTINHO F P, CAMPELLO R J G B, et al. Improving k-means through distributed scalable metaheuristics[J]. Neurocomputing, 2017, 246:45-57. [16] BERKHIN P. A survey of clustering data mining techniques[J]. Grouping Multidimensional Data, 2006, 43(1):25-71. [17] RUI XU, DONALD C. WUNSCH Ⅱ. Survey of clustering algorithms[J]. IEEE Transactions on Neural Networks, 2005, 16(3):645-678. |