Journal of Computer Applications ›› 2018, Vol. 38 ›› Issue (4): 955-959.DOI: 10.11772/j.issn.1001-9081.2017092181

Previous Articles     Next Articles

k-nearest neighbor classification method for class-imbalanced problem

GUO Huaping1, ZHOU Jun1, WU Chang'an1, FAN Ming2   

  1. 1. School of Computer and Information Technology, Xinyang Normal University, Xinyang Henan 464000, China;
    2. School of Information Engineering, Zhengzhou University, Zhengzhou Henan 450000, China
  • Received:2017-09-08 Revised:2017-10-30 Online:2018-04-10 Published:2018-04-09

面向非平衡类问题的k近邻分类算法

郭华平1, 周俊1, 邬长安1, 范明2   

  1. 1. 信阳师范学院 计算机与信息技术学院, 河南 信阳 464000;
    2. 郑州大学 信息工程学院, 郑州 450000
  • 通讯作者: 郭华平
  • 作者简介:郭华平(1982-),男,河南信阳人,副教授,博士,CCF会员,主要研究方向:机器学习、数据挖掘;周俊(1984-),男,河南信阳人,硕士研究生,主要研究方向:机器学习;邬长安(1959-),男,河南信阳人,教授,硕士,主要研究方向:模式识别、图像处理;范明(1948-),男,河南郑州人,教授,博士生导师,硕士,主要研究方向:机器学习、数据挖掘、数据库。

Abstract: To improve the performance of k-Nearest Neighbor (kNN) model on class-imbalanced data, a new kNN classification algorithm was proposed. Different from the traditional kNN, for the learning process, the majority set was partitioned into several clusters by using partitioning method (such as K-Means), then each cluster was merged with the minority set as a new training set to train a kNN model, therefore a classifier library was constructed consisting of serval kNN models. For the prediction, using a partitioning method (such as K-Means), a model was selected from the classifier library to predict the class category of a sample. By this way, it is guaranteed that the kNN model can efficiently discover local characteristics of the data, and also fully consider the effect of imbalance of the data on the performance of the classifier. Besides, the efficiency of kNN was also effectively promoted. To further enhance the performance of the proposed algorithm, Synthetic Minority Over-sampling TEchnique (SMOTE) was applied to the proposed algorithm. Experimental results on KEEL data sets show that the proposed algorithm effectively enhances the generalization performance of kNN method on evaluation measures of recall, g-mean, f-measure and Area Under ROC Curve (AUC) on majority set partitioned by random partition strategy, and it also shows great superiority to other state-of-the-art methods.

Key words: class-imbalanced problem, k-Nearest Neighbor (kNN), partitioning, oversampling

摘要: 针对k近邻(kNN)方法不能很好地解决非平衡类问题,提出一种新的面向非平衡类问题的k近邻分类算法。与传统k近邻方法不同,在学习阶段,该算法首先使用划分算法(如K-Means)将多数类数据集划分为多个簇,然后将每个簇与少数类数据集合并成一个新的训练集用于训练一个k近邻模型,即该算法构建了一个包含多个k近邻模型的分类器库。在预测阶段,使用划分算法(如K-Means)从分类器库中选择一个模型用于预测样本类别。通过这种方法,提出的算法有效地保证了k近邻模型既能有效发现数据局部特征,又能充分考虑数据的非平衡性对分类器性能的影响。另外,该算法也有效地提升了k近邻的预测效率。为了进一步提高该算法的性能,将合成少数类过抽样技术(SMOTE)应用到该算法中。KEEL数据集上的实验结果表明,即使对采用随机划分策略划分的多数类数据集,所提算法也能有效地提高k近邻方法在评价指标recall、g-mean、f-measure和AUC上的泛化性能;另外,过抽样技术能进一步提高该算法在非平衡类问题上的性能,并明显优于其他高级非平衡类处理方法。

关键词: 非平衡类技术, k近邻, 划分, 过抽样

CLC Number: