[1] 宋海燕,张建国,王珺,等.基于表面肌电的人体背部负重行走肌肉疲劳特性研究[J].生物医学工程学杂志,2016,33(3):426-430.(SONG H Y, ZHANG J G, WANG J, et al. Study on muscle fatigue property of human body in shoulder loaded walking based on surface electromyogram[J]. Journal of Biomedical Engineering, 2016, 33(3):426-430.) [2] CIFREK M, MEDVED V, TONKOVIC S, et al. Surface EMG based muscle fatigue evaluation in biomechanics[J]. Clinical Biomechanics, 2009,24(4):327-340. [3] WU Q, CHEN X, DING L, et al. Classification of EMG signals by BFA-optimized GSVCM for diagnosis of fatigue status[J]. IEEE Transactions on Automation Science and Engineering, 2017, 14(2):915-930. [4] YAMAGUCHI T, MIKAMI S, SAITO M, et al. A newly developed ultraminiature wearable electromyogram system useful for analyses of masseteric activity during the whole day[J]. Journal of Prosthodontic Research, 62(1), 2018:110-115. [5] 王粉娟.SEMG检测系统的研究与设计[D].西安:西安工业大学,2011:12-24.(WANG F J. The research and design of SEMG detection system[D]. Xi'an:Xi'an Technological University, 2011:12-24.) [6] DUCHÊNE J, GOUBEL F. Surface electromyogram during voluntary contraction:processing tools and relation to physiological events[J]. Critical Reviews in Biomedical Engineering, 1993, 21(4):313-397. [7] TKACH D, HUANG H, KUIKEN T A. Study of stability of time-domain features for electromyographic pattern recognition[J]. Journal of NeuroEngineering and Rehabilitation, 2010, 7(1):21-34. [8] 王奎.sEMG常用时频方法及其用于分析动态肌肉疲劳时的策略[J].中国运动医学杂志,2010,29(1):104-108.(WANG K. Conventional time-frequency method of sEMG and strategy used for dynamic muscle fatigue analysis[J]. Chinese Journal of Sports Medicine, 2010, 29(1):104-108.) [9] NAEEM U J, XIONG C H. FFM:a muscle fatigue index extraction by utilizing fuzzy network and mean power frequency[J]. International Journal of Engineering, Business and Enterprise Applications, 2013, 3(1):25-35. [10] CHOWDHURY R, REAZ B M I, ISLAM M T. Wavelet transform to recognize muscle fatigue[C]//Proceedings of the 2012 Third Asian Himalayas International Conference on Internet. Piscataway, NJ:IEEE, 2012:1-5. [11] LI Z, WANG B, YANG C, et al. Boosting-based EMG patterns classification scheme for robustness enhancement[J]. IEEE Journal of Biomedical and Health Informatics, 2013, 17(3):545-552. [12] 罗志增,张清菊,蒋静坪.表面肌电信号的小波消噪改进算法[J].浙江大学学报(工学版),2007,41(2):213-216,220.(LUO Z Z, ZHANG Q J, JIANG J P. Improving method for surface electromyography denoising based on wavelet transform[J]. Journal of Zhejiang University (Engineering Science), 2007, 41(2):213-216, 220.) [13] 刘建,邹任玲,张东衡,等.基于多通道表面肌电信号带谱熵的肌肉疲劳度分析[J].生物医学工程学杂志,2016,33(3):431-435.(LIU J, ZOU R L, ZHANG D H, et al. Analysis of the muscle fatigue based on band spectrum entropy of multi-channel surface electromyography[J]. Journal of Biomedical Engineering, 2016, 33(3):431-435.) [14] HUANG N E, WU M L, QU W D, et al. Applications of Hilbert-Huang transform to non-stationary financial time series analysis[J]. Applied Stochastic Models in Business and Industry, 2003, 19(3):245-268. [15] GOLDBERGER A L, AMARAL L A, GLASS L, et al. PhysioBank, PhysioToolkit, and PhysioNet:components of a new research resource for complex physiologic signals[J]. Circulation, 2000, 101(23):E215-E220. [16] GEORGAKIS A, STERGIOULAS L K, GIAKAS G. Fatigue analysis of the surface EMG signal in isometric constant force contractions using the averaged instantaneous frequency[J]. IEEE Transactions on Biomedical Engineering, 2003, 50(2):262-265. [17] SUBASI A, KIYMIK M K. Muscle fatigue detection in EMG using time-frequency methods, ICA and neural networks[J]. Journal of Medical Systems, 2010, 34(4):777-785. [18] STULEN F B, de LUCA C J. Frequency parameters of the myoelectric signal as a measure of muscle conduction velocity[J]. IEEE Transactions on Biomedical Engineering, 1981, BME-28(7):515-523. [19] 张晓伟.基于运动信息监测的可穿戴系统研究[D].北京:北京服装学院,2016:22-43.(ZHANG X W. The research of wearable system on motion information monitoring[D]. Beijing:Beijing Institute of Fashion Technology, 2016:22-43.) |