Journal of Computer Applications ›› 2018, Vol. 38 ›› Issue (6): 1751-1754.DOI: 10.11772/j.issn.1001-9081.2017112735

Previous Articles     Next Articles

Real-time visual tracking algorithm via channel stability weighted complementary learning

FAN Jiaqing1, SONG Huihui2, ZHANG Kaihua1   

  1. 1. Jiangsu Key Laboratory of Big Data Analysis Technology(Nanjing University of Information Science and Technology), Nanjing Jiangsu 210044, China;
    2. Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, Nanjing Jiangsu 210044, China
  • Received:2017-11-20 Revised:2018-02-24 Online:2018-06-10 Published:2018-06-13
  • Supported by:
    This work is partially supported by the National Natural Science Foundation of China (41501377), the Natural Science Foundation of Jiangsu Province (BK20150906, BK20170040).

通道稳定性加权补充学习的实时视觉跟踪算法

樊佳庆1, 宋慧慧2, 张开华1   

  1. 1. 江苏省大数据分析技术重点实验室(南京信息工程大学), 南京 210044;
    2. 南京信息工程大学 大气环境与装备技术协同创新中心, 南京 210044
  • 通讯作者: 张开华
  • 作者简介:樊佳庆(1994-),男,江苏南通人,硕士研究生,主要研究方向:目标跟踪;宋慧慧(1986-),女,山东聊城人,教授,博士,主要研究方向:遥感图像处理;张开华(1983-),男,山东日照人,教授,博士,CCF会员,主要研究方向:图像分割、目标跟踪。
  • 基金资助:
    国家自然科学基金资助项目(41501377);江苏省自然科学基金资助项目(BK20150906,BK20170040)。

Abstract: In order to solve the problem of tracking failure of the Sum of template and pixel-wise learners (Staple) tracking algorithm for in-plane rotation and partial occlusion, a simple and effective Channel Stability-weighted Staple (CSStaple) tracking algorithm was proposed.Firstly, a standard correlation filter classifier was employed to detect the response value of each channel. Then, the stability weight of each channel was calculated and multiplied to the weight of each layer to obtain correlation filtering response. Finally, by integrating the response of the color complementary learner, the final response result was obtained, and the location of the maximum value in the response was the tracking result. The proposed algorithm was compared with several state-of-the-art tracking algorithms including Channel and Spatial Reliability Discriminative Correlation Filter (CSR-DCF) tracking, Hedged Deep Tracking (HDT), Kernelized Correlation Filter (KCF) Tracking and Staple. The experimental results show that, the proposed algorithm performs best in the success rate, it is 2.5 percentage points higher and 0.9 percentage points higher than Staple on OTB50 and OTB100 respectively, which proves the effectiveness of the proposed algorithm for target in-plane rotation and partial occlusion.

Key words: correlation filter, visual tracking, color histogram, complementary learning, channel stability weighting

摘要: 为解决补充学习(Staple)跟踪算法在平面内旋转、部分遮挡时存在的跟踪失败问题,提出了一种通过通道稳定性加权的补充学习(CSStaple)跟踪算法。首先,使用标准相关滤波分类器检测出每层通道的响应值;然后,计算获得每层通道的稳定性权重,并乘到每层权重上,获得相关滤波响应;最后,通过融合颜色补充学习器的响应,得到最终的响应结果,响应中的最大值的位置即为跟踪结果。将所提算法与层和空间可靠性判别相关滤波(CSR-DCF)跟踪、对冲深度跟踪(HDT)、核化相关滤波(KCF)跟踪和Staple等跟踪算法进行了对比实验。实验结果表明,所提算法在成功率上表现最优,在OTB50和OTB100上比Staple分别高出2.5个百分点和0.9个百分点,验证了所提算法对目标在平面内旋转和部分遮挡时的有效性。

关键词: 相关滤波, 视觉跟踪, 颜色直方图, 补充学习, 通道稳定性加权

CLC Number: