[1] HENRIQUES J F, CASEIRO R, MARTINS P, et al. High-speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3):583-596. [2] 樊佳庆,宋慧慧,张开华. 通道稳定性加权补充学习的实时视觉跟踪算法[J]. 计算机应用, 2018, 38(6):1751-1754. (FAN J Q, SONG H H, ZHANG K H. Real-time visual tracking via channel stability weighted complementary learning[J]. Journal of Computer Applications, 2018, 38(6):1751-1754.) [3] 熊昌镇,车满强,王润玲. 基于稀疏卷积特征和相关滤波的实时视觉跟踪算法[J]. 计算机应用, 2018, 38(8):2175-2179. (XIONG C Z, CHE M Q, WANG R L. Real-time visual tracking algorithm based on correlation filters and sparse convolutional features[J]. Journal of Computer Applications, 2018, 38(8):2175-2179.) [4] SONG Y, MA C, WU X, et al. VITAL:visual tracking via adversarial learning[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2018:8990-8999. [5] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Proceeding of the 27th International Conference on Neural Information Processing Systems. Cambridge:MIT Press, 2014:2672-2680. [6] FAN H, LING H. SANet:structure-aware network for visual tracking[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Piscataway:IEEE, 2017:2217-2224. [7] PINEDA F J. Generalization of back propagation to recurrent and higher order neural networks[C]//Proceedings of the 1987 International Conference on Neural Information Processing Systems. Cambridge:MIT Press, 1987:602-611. [8] NAM H, BAEK M, HAN B. Modeling and propagating CNNs in a tree structure for visual tracking[EB/OL].[2019-12-20].https://arxiv.org/pdf/1608.07242.pdf. [9] NAM H, HAN B. Learning multi-domain convolutional neural networks for visual tracking[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2016:4293-4302. [10] KRISTAN M, MATAS J, LEONARDIS A, et al. The visual object tracking VOT2015 challenge results[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision Workshop. Piscataway:IEEE, 2015:564-586. [11] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2014:580-587. [12] RUSSAKOVSKY O, DENG J, SU H, et al. ImageNet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015, 115(3):211-252. [13] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY:Curran Associates Inc., 2017:6000-6010. [14] ZHANG H, GOODFELLOW I J, METAXAS D N, et al. Self-attention generative adversarial networks[C]//Proceedings of the 36th International Conference on Machine Learning. New York:JMLR.org, 2019:7354-7363. [15] WANG X, GIRSHICK R, GUPTA A, et al. Non-local neural networks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2018:7794-7803. [16] SUNG K K, POGGIO T. Example-based learning for view based human face detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(1):39-51. [17] WU Y, LIM J, YANG M H. Online object tracking:a benchmark[C]//Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2013:2411-2418. [18] WU Y, LIM J, YANG M H. Object tracking benchmark[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9):1834-1848. [19] DANELLJAN M, BHAT G, SHAHBAZ KHAN F, et al. ECO:efficient convolution operators for tracking[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2017:6931-6939. [20] DANELLJAN M, ROBINSON A, SHAHBAZ KHAN F, et al. Beyond correlation filters:learning continuous convolution operators for visual tracking[C]//Proceedings of the 14th European Conference on Computer Vision. Cham:Springer, 2016:472-488. [21] DANELLJAN M, HAGER G, SHAHBAZ KHAN F, et al. Adaptive decontamination of the training set:a unified formulation for discriminative visual tracking[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2016:1430-1438. [22] HONG S, YOU T, KWAK S, et al. Online tracking by learning discriminative saliency map with convolutional neural network[C]//Proceedings of the 32nd International Conference on Machine Learning. New York:JMLR.org, 2015:597-606. [23] BERTINETTO L, VALMADRE J, HENRIQUES J F, et al. Fully-convolutional Siamese networks for object tracking[C]//Proceedings of the 2016 European Conference on Computer Vision, LNCS 9914. Cham:Springer, 2016:850-865. [24] WANG Q, GAO J, XING J, et, al. DCFNet:discriminant correlation filters network for visual tracking[EB/OL].[2019-12-20].https://arxiv.org/pdf/1704.04057v1.pdf. |