[1] 谷琼,袁磊,熊启军,等.基于非均衡数据集的代价敏感学习算法比较研究[J].微电子学与计算机,2011,28(8):146-149.(GU Q, YUAN L, XIONG Q J, et al. A comparative study of cost-sensitive learning algorithm based on imbalanced data sets[J]. Micro Electronics & Computer, 2011, 28(8):146-149.) [2] 刘胥影.代价敏感学习方法的研究[D].南京:南京大学,2010:7.(LIU X Y. Research on cost-sensitive learning methods[D]. Nanjing:Nanjing University, 2010:7.) [3] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 2012 International Conference on Neural Information Processing Systems. Cambridge, MA:MIT Press, 2012:1097-1105. [4] YAN Y, CHEN M, SHYU M L, et al. Deep learning for imbalanced multimedia data classification[C]//Proceedings of the 2015 IEEE International Symposium on Multimedia. Piscataway, NJ:IEEE, 2015:483-488. [5] CHUNG Y A, LIN H T, YANG S W. Cost-aware pre-training for multiclass cost-sensitive deep learning[J/OL]. arXiv preprint, 2015:arXiv:1511.09337[2017-06-15]. https://arxiv.org/abs/1511.09337. [6] SCHROFF F, KALENICHENKO D, PHILBIN J. FaceNet:a unified embedding for face recognition and clustering[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2015:815-823. [7] 缪林松.基于代价敏感神经网络算法的软件缺陷预测[J].电子科技,2012,25(6):75-78.(MIAO L S. Software defect prediction based on cost-sensitive neural networks[J]. Electronic Science and Technology, 2012, 25(6):75-78.) [8] LIU X Y, ZHOU Z H. Learning with cost intervals[C]//Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM, 2010:403-412. [9] WANG K J, MAKOND B, WANG K M. An improved survivability prognosis of breast cancer by using sampling and feature selection technique to solve imbalanced patient classification data[J]. BMC Medical Informatics and Decision Making, 2013, 13(1):124. [10] JIA Y Q. Deep learning framework by BAIR[EB/OL].[2017-09-12]. http://caffe.berkeleyvision.org/. [11] STEHMAN S V. Selecting and interpreting measures of thematic classification accuracy[J]. Remote Sensing of Environment, 1997, 62(1):77-89. [12] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint, 2014:arXiv:1409.1556[2017-06-03]. https://arxiv.org/abs/1409.1556. |