[1] 蔡延光,宋康,张敏捷,等.自适应多目标混合差分进化算法在联盟运输调度中的应用[J].计算机应用,2010,30(11):2887-2890. (CAI Y G, SONG K, ZHANG M J, et al. Adaptive multi-objective hybrid differential evolution algorithm in union transport scheduling[J]. Journal of Computer Applications, 2010, 30(11):2887-2890.) [2] BALAJI S, DEVARAJ D, HOSIMINTHILAGAR S, et al. Improved multi objective differential evolution algorithm for congestion management in restructured power systems[C]//Proceedings of the 2016 IEEE Industrial Electronics and Applications Conference. Piscataway, NJ:IEEE, 2016:203-210. [3] SIKDAR U K, EKBAL A, SAHA S. Differential evolution based multiobjective optimization for biomedical entity extraction[C]//ICACCI 2014:Proceedings of the 2014 International Conference on Advances in Computing, Communications and Informatics. Piscataway, NJ:IEEE, 2014:1039-1044. [4] LI H, ZHANG Q. Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation, 2009, 13(2):284-302. [5] ZHANG Q F, LI H. MOEA/D:a multiobjective evolutionary algorithm based on decomposition[J]. IEEE Transactions on Evolutionary Computation, 2007, 11(6):712-731. [6] 许玉龙,方建安,张晗,等.基于非支配解排序的快速多目标微分进化算法[J].计算机应用,2014,34(9):2547-2551. (XU Y L, FANG J A, ZHANG H, et al. Fast multi-objective differential evolution algorithm based on non-dominated solution sorting[J]. Journal of Computer Applications, 2014,34(9):2547-2551.) [7] 魏文红,王甲海,陶铭,等.基于泛化反向学习的多目标约束差分进化算法[J].计算机研究与发展,2016,53(6):1410-1421. (WEI W H, WANG J H, TAO M, et al. Multi-objective constrained differential evolution using generalized opposition-based learning[J]. Journal of Computer Research and Development, 2016, 53(6):1410-1421.) [8] ALI M, SIARRY P, PANT M. An efficient differential evolution based algorithm for solving multi-objective optimization problems[J]. European Journal of Operational Research, 2011, 217(2):404-416. [9] LEUNG S W, ZHANG X, YUE S Y. Multiobjective differential evolution algorithm with opposition-based parameter control[C]//Proceedings of the 2012 IEEE Congress on Evolutionary Computation. Piscataway, NJ:IEEE, 2012:1-8. [10] ZHAO L, LI D, HUANG X, et al. Modified non-dominated sorted differential evolution for multi-objective optimization[C]//CCC 2017:Proceedings of the 201736th Chinese Control Conference. Piscataway, NJ:IEEE, 2017:2830-2834. [11] CHEN X, DU W, QIAN F. Multi-objective differential evolution with ranking-based mutation operator and its application in chemical process optimization[J]. Chemometrics & Intelligent Laboratory Systems, 2014, 136:85-96. [12] GONG W, CAI Z. Differential evolution with ranking-based mutation operators[J]. IEEE Transactions on Cybernetics, 2013, 43(6):2066-2081. [13] 公茂果,焦李成,杨咚咚,等.进化多目标优化算法研究[J].软件学报,2009,20(2):271-289. (GONG M G, JIAO L C, YANG D D, et al. Research on evolutionary multi-objective optimization algorithm[J]. Journal of Software, 2009, 20(2):271-289.) [14] DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm:NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2):182-197. [15] QIAN W, LI A. Adaptive differential evolution algorithm for multiobjective optimization problems[J]. Applied Mathematics & Computation, 2008, 201(1/2):431-440. [16] WANG Y-N, WU L-H, YUAN X-F. Multi-objective self-adaptive differential evolution with elitist archive and crowding entropy-based diversity measure[J]. Soft Computing, 2010, 14:193-209. [17] TIZHOOSH H R. Opposition-based learning:a new scheme for machine intelligence[C]//CIMCA '05:Proceedings of the 2005 International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce. Washington, DC:IEEE Computer Society, 2005:695-701. [18] DEB K, THIELE L, LAUMANNS M, et al. Scalable multi-objective optimization test problems[C]//CEC'02:Proceedings of the 2002 Congress on Evolutionary Computation. Washington, DC:IEEE Computer Society, 2002:825-830. [19] TIAN Y, CHENG R, ZHANG X, et al. PlatEMO:a MATLAB platform for evolutionary multi-objective optimization[J]. IEEE Computational Intelligence Magazine, 2017, 12(4):73-87. [20] TIAN Y, Zhang X, CHENG R, et al. A multi-objective evolutionary algorithm based on an enhanced inverted generational distance metric[C]//CEC'16:Proceedings of the 2016 IEEE Congress on Evolutionary Computation. Washington, DC:IEEE Computer Society, 2016:5222-5229. [21] COELLO COELLO A C, PULIDO G T, LECHUGA M S. Handling multiple objectives with particle swarm optimization[J]. IEEE Transactions on Evolutionary Computation, 2004, 8(3):256-279. |