[1] 刘建伟, 刘媛, 罗雄麟. 半监督学习方法[J]. 计算机学报, 2015,38(8):1592-1617.(LIU J W, LIU Y, LUO X L. Semi-supervised learning methods[J]. Chinese Journal of Computers, 2015,38(8):1592-1617.) [2] ZHOU Z H, LI M. Semi-supervised learning by disagreement[J]. Knowledge & Information Systems, 2010, 24(3):415-439. [3] CHAPELLE O, ZIEN A. Semi-Supervised Learning (Adaptive Computation and Machine Learning)[M]. Cambridge, MA:MIT Press, 2006:3-15. [4] CHAPELLE O, SCHÖLKOPF B, ZIEN A. Semi-supervised learning[J]. Journal of the Royal Statistical Society, 2013, 172(2):530-530. [5] COLLOBERT R, SINZ F, WESTON J, et al. Large scale transductive SVMs[J]. Journal of Machine Learning Research, 2006, 7(1):1687-1712. [6] LI Y F, KWOK J T, ZHOU Z H. Semi-supervised learning using label mean[C]//Proceedings of the 26th Annual International Conference on Machine Learning. New York:ACM, 2009:633-640. [7] BELKIN M, NIYOGI P, SINDHWANI V. Manifold regularization:a geometric framework for learning from labeled and unlabeled examples[J]. Journal of Machine Learning Research, 2006, 7(12):2399-2434. [8] CHAPELLE O, SCHOLKOPF B, ZIEN A. Label Propagation and Quadratic Criterion[M]. Cambridge, MA:MIT Press, 2006:193-216. [9] LI Y F, ZHOU Z H. Improving semi-supervised support vector machines through unlabeled instances selection[C]//Proceedings of the 25th AAAI Conference on Artificial Intelligence. Menlo Park, CA:AAAI Press, 2010:386-391. [10] LI Y F, ZHOU Z H. Towards making unlabeled data never hurt[C]//Proceedings of the 28th International Conference on International Conference on Machine Learning. Bellevue, Washington:Omnipress, 2011:1081-1088. [11] LI Y F, ZHOU Z H. Towards making unlabeled data never hurt[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2015, 37(1):175-188. [12] WANG Y, CHEN S. Safety-aware semi-supervised classification[J]. IEEE Transactions on Neural Networks and Learning Systems, 2013, 24(11):1763-1772. [13] WANG Y, MENG Y, FU Z, et al. Towards safe semi-supervised classification:adjusted cluster assumption via clustering[J]. Neural Processing Letters, 2017, 46(3):1-12. [14] MELO F M D, CARVALHO F D A T D. Semi-supervised fuzzy c-medoids clustering algorithm with multiple prototype representation[C]//Proceedings of the 2013 IEEE International Conference on Fuzzy System. Piscataway, NJ:IEEE, 2013:1-7. [15] ZHAO J, CHEN M, ZHANG Z, et al. Localized pairwise constraint proximal support vector machine[C]//Proceedings of the 9th IEEE International Conference on Cognitive Informatics. Piscataway, NJ:IEEE, 2010:908-913. [16] ZHANG Z, YE N. Constraint projections for discriminative support vector machines[C]//Proceedings of the 2009 International Joint Conference on Bioinformatics, Systems Biology and Intelligent Computing. Washington, DC:IEEE Computer Society, 2009:501-507. [17] 奚臣, 钱鹏江, 顾晓清,等. 流形与成对约束联合正则化半监督分类方法[J]. 计算机科学与探索, 2017, 11(2):303-313.(XI C, QIAN P J, GU X Q, et al. Semi-supervised classification method based on joint regularization of maniford and pairwise constraints[J]. Journal of Frontiers of Computer Science and Technology, 2017, 11(2):303-313.) [18] SCHÖLKOPF B, HERBRICH R, SMOLA A J. A generalized representer theorem[M]//Computational Learning Theory. Berlin:Springer, 2001:416-426. [19] GORSKI J, PFEUFFER F, KLAMROTH K. Biconvex sets and optimization with biconvex functions:a survey and extensions[J]. Mathematical Methods of Operations Research, 2007, 66(3):373-407. [20] MARON O, RATAN A L. Multiple-instance learning for natural scene classification[C]//Proceedings of the 15th International Conference on Machine Learning. San Francisco, CA:Morgan Kaufmann Publishers, 1998:341-349. [21] ZHOU Z H, ZHANG M. Multi-instance multi-label learning with application to scene classification[C]//Proceedings of the 19th International Conference on Neural Information Processing Systems. Cambridge, MA:MIT Press, 2007:1609-1616. |