[1] 岳丽娟. 医学图像的特征提取与分类方法研究[D]. 无锡:江南大学,2013:7.(YUE L J. Research on medical image feature extraction and classification[D]. Wuxi:Jiangnan University, 2013:7.) [2] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. Cambridge:MIT Press,2014:2672-2680. [3] ODENA A,OLAH C,SHLENS J. Conditional image synthesis with auxiliary classifier GANs[C]//Proceedings of the 34th International Conference on Machine Learning. New York:JMLR. org,2017:2642-2651. [4] PATHAK D,KRÄHENBÜHL P,DONAHUE J,et al. Context encoders:feature learning by inpainting[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2016:2536-2544. [5] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. Red Hook, NY:Curran Associates Inc.,2012:1097-1105. [6] REED S,AKATA Z,YAN X,et al. Generative adversarial text to image synthesis[C]//Proceedings of the 33rd International Conference on Machine Learning. New York:JMLR. org,2016:1060-1069. [7] GOODFELLOW I. NIPS 2016 tutorial:generative adversarial networks[EB/OL].[2020-04-15]. https://arxiv.org/pdf/1701.00160.pdf. [8] ISOLA P,ZHU J Y,ZHOU T,et al. Image-to-image translation with conditional adversarial networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2017:5967-5976. [9] 刘坤, 王典, 荣梦学. 基于半监督生成对抗网络X光图像分类算法[J]. 光学学报,2019,39(8):No. 0810003.(LIU K,WANG D,RONG M X. X-ray image classification algorithm based on semisupervised generative adversarial networks[J]. Acta Optica Sinica, 2019,39(8):No. 0810003.) [10] 唐贤伦, 杜一铭, 刘雨微, 等. 基于条件深度卷积生成对抗网络的图像识别方法[J]. 自动化学报,2018,44(5):855-864. (TANG X L,DU Y M,LIU Y W,et al. Image recognition with conditional deep convolutional generative adversarial networks[J]. Acta Automatica Sinica,2018,44(5):855-864.) [11] 曾琦, 向德华, 李宁, 等. 基于半监督深度生成对抗网络的图像识别方法[J]. 测控技术,2019,38(8):37-42.(ZENG Q, XIANG D H,LI N,et al. Image recognition based on semi supervised deep convolutional generative adversarial networks[J]. Measurement and Control Technology,2019,38(8):37-42.) [12] SALIMANS T,GOODFELLOW I,ZAREMBA W,et al. Improved techniques for training GANs[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems. Red Hook,NY:Curran Associates Inc.,2016:2234-2242. [13] RADFORD A, METZ L, CHINTALA S. Unsupervised representation learning with deep convolutional generative adversarial networks[EB/OL].[2020-04-15]. https://arxiv.org/pdf/1511.06434.pdf. [14] 谢江荣, 李范鸣, 卫红, 等. 基于生成对抗式神经网络的红外目标仿真方法[J]. 光学学报,2019,39(3):No. 0311002. (XIE J R,LI F M,WEI H,et al. Infrared target simulation method based on generative adversarial neural networks[J]. Acta Optica Sinica,2019,39(3):No. 0311002.) [15] 张营营. 生成对抗网络模型综述[J]. 电子设计工程,2018,26(5):34-37,43.(ZHANG Y Y. A survey of generative adversarial networks[J]. Electronic Design Engineering,2018,26(5):34-37,43.) [16] 常亮, 邓小明, 周明全, 等. 图像理解中的卷积神经网络[J]. 自动化学报,2016,42(9):1300-1312.(CHANG L,DENG X M, ZHOU M Q, et al. Convolutional neural networks in image understanding[J]. Acta Automatica Sinica,2016,42(9):1300-1312.) [17] GOODFELLOW I J,WARDE-FARLEY D,MIRZA M,et al. Maxout networks[C]//Proceedings of the 30th International Conference on International Conference on Machine Learning. New York:JMLR. org,2013:1319-1327. [18] NAIR V,HINTON G E. Rectified linear units improve restricted Boltzmann machines[C]//Proceedings of the 27th International Conference on International Conference on Machine Learning. New York:JMLR. org,2010:807-814. [19] XU B,WAN N,CHEN T,et al. Empirical evaluation of rectified activations in convolutional network[EB/OL].[2020-04-15]. http://arxiv.org/pdf/1505.00853.pdf. [20] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL].[2019-01-25]. http://arxiv.org/pdf/1409.1556.pdf. [21] RASMUS A, BERGLUND M, HONKALA M, et al. Semisupervised learning with Ladder networks[EB/OL].[2019-01-25]. https://arxiv.org/pdf/1507.02672.pdf. |