[1] ZHU X F, LI X L, ZHANG S C. Block-row sparse multiview multilabel learning for image classification[J]. IEEE Transactions on Cybernetics, 2016, 46(2):450-461. [2] YANG Y, ZHA Z J, GAO Y, et al. Exploting web images for semantic video indexing via robust sample-specific loss[J]. IEEE Transactions on Cybernetics, 2014, 16(6):1677-1689. [3] ZHU X F, HUANG Z, SHEN H T, et al. Linear cross-modal hashing for effective multimedia search[C]//Proceedings of the 21st ACM International Conference on Multimedia. New York:ACM, 2013:143-152. [4] ZHU X F, ZHANG S C, JIN Z, et al. Missing value estimation for mixed-attribute data sets[J]. IEEE Transactions on Knowledge and Data Engineering, 2011, 23(1):110-121. [5] GU Q Q, LI Z H, HAN J W. Joint feature selection and subspace learning[C]//Proceedings of the 201122nd International Joint Conference on Artificial Intelligence. Menlo Park, CA:AAAI, 2011:1294-1299. [6] ZHANG S C, QIN Z, LING C X, et al. "Missing is useful":missing values in cost-sensitive decision trees[J]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(12):1689-1693. [7] 周志华.机器学习[M].北京:清华大学出版社,2016:126-129.(ZHOU Z H. Machine Learning[M]. Beijing:Tsinghua University Press, 2016:126-129.) [8] VARMA M, BABU B R. More generally in efficient multiple kernel learning[C]//Proceedings of the 26th Annual International Conference on Machine Learning. New York:ACM, 2009:1065-1072. [9] LI Y D, LEI C, FANG Y, et al. Unsupervised feature selection by combining subspace learning with feature self-representation[J]. Pattern Recognition Letters, 2017, 109:35-43. [10] GU Q Q, LI Z H, HAN J W. Linear discriminant dimensionality reduction[C]//Proceedings of the 2011 Joint European Conference on Machine Learning and Knowledge Discovery in Databases, LNCS 6911. Berlin:Springer, 2011:549-564. [11] MVLLER K R, MIKA S, RÄTSCH G, et al. An introduction to kernel-based learning algorithm[J]. IEEE Transactions on Neural Networks, 2001, 12(2):181-201. [12] 王华忠,俞金寿.核函数方法及其模型选择[J].江南大学学报(自然科学版),2006,5(4):500-504.(WANG H Z, YU J S. Study on the kernel-based methods and its model selection[J]. Journal of Southern Yangtze University (Natural Science Edition), 2006, 5(4):500-504.) [13] LU C Y, LIN Z C, YAN S C. Smoothed low rank and sparse matrix recovery by iteratively reweighted least squares minimization[J]. IEEE Transactions on Image Processing, 2015, 24(2):646-654. [14] DAUBECHIES I, DEVORE R, FORNASIER M,et al. Iteratively reweighted least squares minimization for sparse recovery[J]. Communications on Pure and Applied Mathematics, 2008, 63(1):1-38. [15] 宗鸣,龚永红,文国秋,等.基于稀疏学习的kNN分类[J].广西师范大学学报(自然科学版),2016,34(3):39-45.(ZONG M, GONG Y H, WEN G Q, et al. kNN classification based on sparse learning[J]. Journal of Guangxi Normal University (Natural Science Edition), 2016, 34(3):39-45.) [16] PARUOLO P. Multivariate reduced-rank regression:theory and applications[J]. Journal of the American Statistical Association, 1998, 95(450):683-685. [17] UCI. Repository of machine learning data sets[DB/OL].[2018-04-06]. http://archive.ics.uci.edu./ml/. [18] FAN Z Z, XU Y, ZHANG D. Local linear discriminant analysis framework using sample neighbors[J]. IEEE Transactions on Neural Networks, 2011, 22(7):1119-1132. [19] NIE F P, ZHU W, LI X L. Unsupervised feature selection with structured graph optimization[C]//Proceedings of the 30th AAAI Conference on Artificial Intelligence. Menlo Park, CA:AAAI, 2016:1302-1308. [20] CHEN X, YUAN G, NIE F,et al. Semi-supervised feature selection via rescaled linear regression[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence. Menlo Park, CA:AAAI, 2017:1525-1531. [21] ZHU P F, ZUO W M, ZHANG L,et al. Unsupervised feature selection by regularized self-representation[J]. Pattern Recognition, 2015, 48(2):438-446. [22] YAMADA M, JITKRITTUM W, SIGAL L, et al. High-dimensional feature selection by feature-wise kernelized Lasso[J]. Neural Computation, 2014, 26(1):185-207. [23] LIBSVM. A library for support vector machines[EB/OL].[2018-04-06]. http://www.csie.nu.edu.tw/~cjlin/libsvm. |