[1] SEARLE S R. Linear Models for Unbalanced Data[M]. New York:John Wiley & Sons, 1987:145-153. [2] YANG Z, TANG W H, SHINTEMIROV A, et al. Association rule mining-based dissolved gas analysis for fault diagnosis of power transformers[J]. IEEE Transactions on Systems, Man & Cybernetics, Part C:Applications and Reviews, 2009, 39(6):597-610. [3] SUN Y, KAMEL M S, WONG A K C, et al. Cost-sensitive boosting for classification of imbalanced data[J]. Pattern Recognition,2007,40(12):3358-3378. [4] YANG Q, WU X. 10 challenging problems in data mining research[J]. International Journal of Information Technology & Decision Making, 2011, 5(4):597-604. [5] BROWN I, MUES C. An experimental comparison of classification algorithms for imbalanced credit scoring data sets[J]. Expert Systems with Applications, 2012, 39(3):3446-3453. [6] TAVALLAEE M, STAKHANVA N, GHORBANI A A. Toward credible evaluation of anomaly-based intrusion-detection methods[J]. IEEE Transactions on Systems, Man & Cybernetics, Part C:Applications and Reviews, 2010, 40(5):516-524. [7] LIU Y-H, CHEN Y-T. Total margin based adaptive fuzzy support vector machines for multiview face recognition[C]//Proceedings of the 2005 IEEE International Conference on Systems, Man and Cybernetics. Washington, DC:IEEE Computer Society, 2005, 2:1704-1711. [8] MAZUROWSKI M A, HABAS P A, ZURADE J M, et al. Training neural network classifiers for medical decision making:the effects of imbalanced datasets on classification performance[J]. Neural Networks, 2008, 21(2/3):427-436. [9] BERMEJO P, GAMEZ J A, PUERTA J M. Improving the performance of Naive Bayes multinomial in e-mail foldering by introducing distribution-based balance of datasets[J]. Expert Systems with Applications, 2011, 38(3):2072-2080. [10] CHAWLA N V, BOWYER K W, HALL L O, et al. SMOTE:Synthetic Minority Over-Sampling Technique[J]. Journal of Artificial Intelligence Research,2002, 16(1):321-357. [11] HE H, BAI Y, GARCIA E A, et al. ADASYN:adaptive synthetic sampling approach for imbalanced learning[C]//Proceeding of the 2008 International Joint Conference on Neural Networks. Piscataway, NJ:IEEE, 2008:1322-1328. [12] FREUND Y, SCHAPIRE R E. Experiments with a new boosting algorithm[C]//Proceedings of the Thirteenth International Conference on Machine Learning. San Francisco, CA:Morgan Kaufmann, 1996:148-156. [13] CHAWLA N V, LAZAREVIC A, HALL L O, et al. SMOTEBoost:improving prediction of the minority class in boosting[C]//Proceedings of the 2003 European Conference on Knowledge Discovery in Databases, LNCS 2838. Berlin:Springer, 2003:107-119. [14] SEIFFERT C, KHOSHGOFTAAR T M, van HULSE J, et al. RUSBoost:a hybrid approach to alleviating class imbalance[J]. IEEE Transactions on Systems, Man and Cybernetics, Part A:Systems and Humans, 2010, 40(1):185-197. [15] FAN W, STOLFO S J, ZHANG J, et al. AdaCost:misclassification cost-sensitive boosting[C]//Proceedings of the 16th International Conference on Machine Learning. San Francisco, CA:Morgan Kaufmann, 1999:97-105. [16] CATENI S, COLLA V, VANNUCCI M. A method for resampling imbalanced datasets in binary classification tasks for real-world problems[J]. Neurocomputing, 2014, 135:32-41. [17] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. Cambridge, MA:MIT Press, 2014, 2:2672-2680. [18] GOODFELLOW I. NIPS 2016 tutorial:generative adversarial networks[EB/OL].[2017-09-24]. https://arxiv.org/pdf/1701.00160.pdf. [19] LI J, MONROE W, SHI T, et al. Adversarial learning for neural dialogue generation[EB/OL].[2018-05-02]. https://arxiv.org/pdf/1701.06547v1.pdf. [20] YU L, ZHANG W, WANG J, et al. SeqGAN:sequence generative adversarial nets with policy gradient[EB/OL].[2018-05-02]. https://arxiv.org/pdf/1609.05473.pdf. [21] HU WW, TAN Y. Generating adversarial malware examples for black-box attacks based on GAN[EB/OL].[2018-05-02]. https://arxiv.org/pdf/1702.05983v1.pdf. [22] CHIDAMBARAM M, QI Y. Style transfer generative adversarial networks:learning to play chess differently[EB/OL].[2018-07-02]. https://arxiv.org/pdf/1702.06762v1.pdf. [23] FREUND Y, SCHAPIRE R E. A desicion-theoretic generalization of on-line learning and an application to boosting[J]. Journal of Computer & System Sciences, 1997, 55(1):119-139. [24] HUNT E, KRIVANEK J. The effects of pentylenetetrazole and methylphenoxypropane on discrimination learning[J]. Psychopharmacology, 1966, 9(1):1-16. [25] BOSE I, FARQUAD M A H. Preprocessing unbalanced data using support vector machine[J]. Decision Support Systems, 2012, 53(1):226-233. [26] 张顺,张化祥.用于多标记学习的K近邻改进算法[J].计算机应用研究,2011,28(12):4445-4450. (ZHANG S, ZHANG H X. Modified KNN algorithm for multi-label learning[J]. Application Research of Computers, 2011, 28(12):4445-4450.) [27] 李诒靖,郭海湘,李亚楠,等.一种基于Boosting的集成学习算法在不均衡数据中的分类[J].系统工程理论与实践,2016,36(1):189-199. (LI Y J, GUO H X, LI Y N, et al. A boosting based on ensemble learning algorithm in imbalanced data classification[J]. Systems Engineering-Theory & Practice, 2016, 36(1):189-199.) |