[1] ZHOU D. An edge-directed bicubic interpolation algorithm[C]//Proceedings of the 20103rd International Congress on Image and Signal Proncessing. Piscataway, NJ:IEEE, 2010:1186-1189. [2] 陶志强,李海林,张红兵.基于新边缘指导插值的迭代反投影超分辨率重建算法[J].计算机工程,2016,42(6):255-260. (TAO Z Q, LI H L, ZHANG H B. Iterative back projection super resolution reconstruction algorithm based on new edge directed interpolation[J]. Computer Engineering, 2016, 42(6):255-260.) [3] 曾凯,丁世飞.图像超分辨率重建的研究进展[J].计算机工程与应用,2017,53(16):29-35. (ZENG K, DING S F. Advances in image super-resolution reconstruction[J]. Computer Engineering and Applications,2017,53(16):29-35.) [4] DONG C, CHEN C L, HE K, et al. Learning a deep convolutional network for image super-resolution[C]//Proceedings of the 2014 European Conference on Computer Vision, LNCS 8692. Cham:Springer, 2014:184-199. [5] KIM J, LEE J K, LEE K M. Deeply-recursive convolutional network for image super-resolution[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2016:1637-1645. [6] LEDIG C, THEIS L, HUSZAR F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]//Proceedings of the 2017 Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2017:105-114. [7] YANG J, WRIGHT J, HUANG T, et al. Image super-resolution via sparse representation[J]. IEEE Transactions on Image Processing, 2010, 19(11):2861-2873. [8] YANG J, WANG Z W, LIN Z, et al. Coupled dictionary learning for image super-resolution[J]. IEEE Transactions on Image Processing, 2012, 21:3467-3478. [9] CANDES E J, WAKIN M B. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2):21-30. [10] ZEYDE R, ELAD M, PROTTER M. On single image scale-up using sparse-representations[C]//Proceedings of the 7th International Conference on Curves and Surfaces, LNCS 6920. Berlin:Springer, 2010:711-730. [11] AHARON M, ELAD M, BRUCKSTEIN A, et al. K-SVD:an algorithm for designing of overcomplete dictionaries for sparse representation[J]. IEEE Transactions on Signal Processing, 2006, 54(11):4311-4322. [12] RUBINSTEIN R, ZIBULEVSKY M, ELAD M. Efficient implementation of the K-SVD algorithm using batch orthogonal matching pursuit[R]. Technion, Israel:Technion University, 2008:1-15. [13] 张晓燕,秦龙龙,钱渊,等.一种改进的稀疏表示超分辨率重建算法[J].重庆邮电大学学报(自然科学版),2016,28(3):400-405. (ZHANG X Y, QIN L L, QIAN Y, et al. An improved sparse representation of super resolution reconstruction algorithm[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2016, 28(3):400-405.) [14] 王旸.超分辨率图像重建效果优化算法研究[J].控制工程,2018,25(5):740-745.(WANG Y. An optimal algorithm for super-resolution image reconstruction[J]. Control Engineering of China, 2018, 25(5):740-745.) [15] 徐川. 基于卡通纹理分解和稀疏表示的图像超分辨率重建[J]. 软件工程,2016,19(5):2096-1472. (XU C. Image super-resolution reconstruction based on cartoon-texture decomposition and sparse representation[J]. Software Engineering, 2016, 19(5):2096-1472.) [16] 练秋生, 张伟. 基于图像块分类稀疏表示的超分辨率重构算法[J]. 电子学报,2012,40(5):920-925.(LIAN Q S,ZHANG W. Image Super-resolution algorithms based on sparse representation of classified image patches[J]. Acta Electronica Sinica, 2012, 40(5):920-925.) |