[1] ZHOU Z H. A brief introduction to weakly supervised learning[J]. National Science Review,2018,5(1):44-53. [2] PRINCE M. Does active learning work? A review of the research[J]. Journal of Engineering Education,2004,93(3):223-231. [3] ZHOU Z H,LI M. Semi-supervised learning by disagreement[J]. Knowledge and Information Systems,2010,24(3):415-439. [4] PAPANDREOU G,CHEN L C,MURPHY K P,et al. Weaklyand semi-supervised learning of a deep convolutional network for semantic image segmentation[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway:IEEE, 2015:1742-1750. [5] CHAPELLE O, SCHÖLKOPF B, ZIEN A. Semi-Supervised Learning[M]. Cambridge:MIT Press,2006:1-8. [6] DIETTERICH T G,LATHROP R H,LOZANO-PÉREZ T. Solving the multiple instance problem with axis-parallel rectangles[J]. Artificial Intelligence,1997,89(1/2):31-71. [7] ZHANG Z Y,ZHAO P,JIANG Y,et al. Learning from incomplete and inaccurate supervision[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM,2019:1017-1025. [8] WANG D, TAN X Y. Label-denoising auto-encoder for classification with inaccurate supervision information[C]//Proceedings of the 22nd International Conference on Pattern Recognition. Piscataway:IEEE,2014:3648-3653. [9] DEMPSTER A P,LAIRD N M,RUBIN D B. Maximum likelihood from incomplete data via the EM algorithm[J]. Journal of the Royal Statistical Society:Series B (Methodological),1977,39(1):1-38. [10] MILLER D J,UYAR H S. A mixture of experts classifier with learning based on both labelled and unlabelled data[C]//Proceedings of the 9th International Conference on Neural Information Processing Systems. Cambridge:MIT Press,1996:571-577. [11] NIGAM K, MCCALLUM A K, THRUN S, et al. Text classification from labeled and unlabeled documents using EM[J]. Machine Learning,2000,39(2/3):103-134. [12] BLUM A,CHAWLA S. Learning from labeled and unlabeled data using graph mincuts[C]//Proceedings of the 18th International Conference on Machine Learning. San Francisco:Morgan Kaufmann Publishers Inc.,2001:19-26. [13] ZHOU D Y,BOUSQUET O,LAL T N,et al. Learning with local and global consistency[C]//Proceedings of the 16th International Conference on Neural Information Processing Systems. Cambridge:MIT Press,2003:321-328. [14] ZHU X J,GHAHRAMANI Z,LAFFERTY J. Semi-supervised learning using Gaussian fields and harmonic functions[C]//Proceedings of the 20th International Conference on Machine Learning. Palo Alto,CA:AAAI Press,2003:912-919. [15] CHAPELLE O,ZIEN A. Semi-supervised classification by low density separation[C]//Proceedings of the 10th International Workshop on Artificial Intelligence and Statistics. New York:JMLR. org,2005:57-64. [16] JOACHIMS T. Transductive inference for text classification using support vector machines[C]//Proceedings of the 16th International Conference on Machine Learning. San Francisco:Morgan Kaufmann Publishers Inc.,1999:200-209. [17] LI Y F,TSANG I W,KWOK J T,et al. Convex and scalable weakly labeled SVMs[J]. Journal of Machine Learning Research, 2013,14:2151-2188. [18] BLUM A,MITCHELL T. Combining labeled and unlabeled data with co-training[C]//Proceedings of the 11th Annual Conference on Computational Learning Theory. New York:ACM,1998:92-100. [19] CHEN D D, WANG W, GAO W, et al. Tri-net for semisupervised deep learning[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence. Palo Alto,CA:AAAI Press,2018:2014-2020. [20] ZHOU Z H. When semi-supervised learning meets ensemble learning[J]. Frontiers of Electrical and Electronic Engineering in China,2011,6(1):6-16. [21] 周志华. 基于分歧的半监督学习[J]. 自动化学报,2013,39(11):1871-1878. (ZHOU Z H. Disagreement-based semisupervised learning[J]. Acta Automatica Sinica,2013,39(11):1871-1878.) [22] ZHANG M L,ZHOU Z H. Exploiting unlabeled data to enhance ensemble diversity[J]. Data Mining and Knowledge Discovery, 2013,26(1):98-129. [23] JOHNSON R W. An introduction to the bootstrap[J]. Teaching Statistics,2001,23(2):49-54. [24] DUA D,GRAFF C. UCI machine learning repository[DS/OL].[2020-09-08]. http://archive.ics.uci.edu/ml. [25] LI Y F,ZHOU Z H. Towards making unlabeled data never hurt[C]//Proceedings of the 28th International Conference on Machine Learning. Madison,WI:Omnipress,2011:1081-1088. [26] DONG H C,LI Y F,ZHOU Z H. Learning from semi-supervised weak-label data[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto,CA:AAAI,2018:2926-2933. |