[1] QAYYUM A, ANWAR S M, MAJID M, et al. Medical image retrieval using deep convolutional neural networks:a review[EB/OL].[2018-04-12]. https://arxiv.org/ftp/arxiv/papers/1709/1709.02250.pdf. [2] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. Lake Tahoe, Nevada:Curran Associates Inc., 2012:1097-1105. [3] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL].[2018-04-12]. https://arxiv.org/pdf/1409.1556.pdf. [4] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2016:770-778. [5] KIM J, LEE J K, LEE K M. Accurate image super-resolution using very deep convolutional networks[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2016:1646-1654. [6] HUANG G, LIU Z, KILIAN Q W, et al. Densely connected convolutional networks[EB/OL].[2018-04-12]. https://arxiv.org/pdf/1608.06993.pdf. [7] HE K, ZHANG X, REN S, et al. Identity mappings in deep residual networks[C]//Proceedings of the 14th European Conference on Computer Vision, LNCS 9908. Cham:Springer, 2016:630-645. [8] CHEN Y, JIN X, KANG B, et al. Sharing residual units through collective tensor factorization in deep neural networks[EB/OL]. (2017-03-15)[2018-04-02]. http://cn.arxiv.org/abs/1703.02180.pdf. [9] 李净,郭洪禹.图像检索中结合文本信息的多示例原型选择及主动学习策略[J],计算机应用,2012,32(10):2899-2903. (LI J, GUO H Y. Multi-instance prototype selection and active learning combined with textual information in image retrieval[J]. Journal of Computer Applications, 2012, 32(10):2899-2903.) [10] KRIZHEVSKY A. Learning multiple layers of features from tiny images[EB/OL].[2018-04-08]. http://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf [11] DENG J, DONG W, SOCHER R, et al, ImageNet:a large-scale hierarchical image database[C]//Proceeding of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2009:248-255. [12] DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]//Proceeding of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2005:886-893. [13] LOWE D G,. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2):91-110. [14] LU X, SONG L, XIE R, et al, Deep hash learning for efficient image retrieval[C]//Proceedings of the 2017 IEEE International Conference on Multimedia and Expo Workshops. Washington, DC:IEEE Computer Society, 2017:579-584. [15] CONJETI S, ROY A G, KATOUZIAN A, et al, Deep residual hashing[EB/OL].[2018-05-04]. http://cn.arxiv.org/abs/1612.05400.pdf. [16] DUAN L, ZHAO C, MIAO J, et al. Deep hashing based fusing index method for large-scale image retrieval[J]. Applied Computational Intelligence and Soft Computing, 2017, 2017:Article ID 9635348. [17] RAZAVIAN A S, AZIZPOUR H, SULLIVAN J,et al, CNN features off-the-shelf:an astounding baseline for recognition[C]//Proceeding of the 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Washington, DC:IEEE Computer Society, 2014:512-519. [18] HUANG G, SUN Y, LIU Z, et al. Deep networks with stochastic depth[C]//Proceedings of the 2016 European Conference on Computer Vision, LNCS 9908. Cham:Springer, 2016:646-661. [19] GIRSHICK R, DONAHUE J, DARRELL T, et al. Region-based convolutional networks for accurate object detection and semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(1):142-158. [20] IOFFE S, SZEGEDY C, Batch normalization:accelerating deep network training by reducing internal covariate shift[C]//Proceedings of the 32nd International Conference on Machine Learning.[S.l.]:PMLR, 2015:448-156. [21] 杨晓兰,强彦,赵娟娟,等.基于医学征象和卷积神经网络的肺结节CT图像哈希检索[J].智能系统学报,2017,12(6):857-864. (YANG X L, QIANG Y, ZHAO J J, et al. Hashing retrieval for CT images of pulmonary nodules based on medical signs and convolutional neural networks[J]. CAAI Transactions on Intelligent Systems, 2017, 12(6):857-864.) |