[1] WANG F-Y. Agent-based control for networked traffic management systems[J]. IEEE Intelligent Systems, 2005, 20(5):92-96. [2] ROSSETTI R J F, FERREIRA P A F, BRAGA R A M, et al. Towards an artificial traffic control system[C]//Proceedings of the 200811th International IEEE Conference on Intelligent Transportation Systems. Piscataway, NJ:IEEE, 2008:14-19. [3] 赵娜,袁家斌,徐晗.智能交通系统综述[J].计算机科学,2014,41(11):7-11.(ZHAO N, YUAN J B, XU H. Survey on intelligent transport system[J]. Computer Science, 2014, 41(11):7-11.) [4] 刘小明,何忠贺.城市智能交通系统技术发展现状及趋势[J].自动化博览,2015(1):58-60.(LIU X M, HE Z H. Development and tendency of intelligent transportation systems in China[J]. Automation Panorama, 2015(1):58-60.) [5] MICHALOPOULOS P G. Vehicle detection video through image processing:the autoscope system[J]. IEEE Transactions on Vehicular Technology, 1991, 40(1):21-29. [6] SUN Z, BEBIS G, MILLER R. On-road vehicle detection using Gabor filters and support vector machines[C]//Proceedings of the 200214th International Conference on Digital Signal Processing. Piscataway, NJ:IEEE, 2002:1019-1022. [7] TZOMAKAS C, von SEELEN W. Vehicle detection in traffic scenes using shadows[EB/OL].[2018-07-02].http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=EB25161C6B0FFE3581F4DF3532E6DE28?doi=10.1.1.45.3234&rep=rep1&type=pdf. [8] TSAI L-W, HSIEH J-W, FAN K-C. Vehicle detection using normalized color and edge map[J]. IEEE Transactions on Image Processing, 2007, 16(3):850-864. [9] 宋晓琳,邬紫阳,张伟伟.基于阴影和类Haar特征的动态车辆检测[J].电子测量与仪器学报,2015,29(9):1340-1347.(SONG X L, WU Z Y, ZHANG W W. Dynamic vehicle detection based on shadow and Haar-like feature[J]. Journal of Electronic Measurement and Instrumentation, 2015, 29(9):1340-1347.) [10] LeCUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553):436-444. [11] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once:unified, real-time object detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE, 2016:779-788. [12] LIU W, ANGUELOV D, ERHAN D, et al. SSD:single shot multibox detector[C]//Proceedings of the 2016 European Conference on Computer Vision. Berlin:Springer, 2016:21-37. [13] REN S, HE K, GIRSHICK R, et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149. [14] YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions[EB/OL]. (2016-04-30)[2018-07-29]. https://arxiv.org/pdf/1511.07122v3.pdf. [15] LIN T-Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[EB/OL].[2018-07-11]. https://arxiv.org/pdf/1612.03144.pdf. [16] LIN T-Y, GOYALP, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Washington, DC:IEEE Computer Society, 2017:2999-3007. [17] ZHAN C, DUAN X, XU S, et al. An improved moving object detection algorithm based on frame difference and edge detection[C]//Proceedings of the 4th International Conference on Image and Graphics. Washington, DC:IEEE Computer Society, 2007:519-523. [18] HORN B K P, SCHUNCK B G. Determining optical flow[J]. Artificial Intelligence, 1981, 17(1/2/3):185-203. [19] HAN X, ZHANG D Q, YU H H. System and method for video detection and tracking:U.S. Patent Application 13/720,653[P]. 2014-06-19. [20] LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2):91-110. [21] PAPAGEORGIOU C P, OREN M, POGGIO T. A general framework for object detection[C]//Proceedings of the 6th International Conference on Computer Vision. Washington, DC:IEEE Computer Society, 1998:555-562. [22] DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]//Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE, 2005,1:886-893 [23] OJALA T, PIETIKINEN M, HARWOOD D. A comparative study of texture measures with classification based on featured distribution[J]. Pattern Recognition, 1996, 29(1):51-59. [24] NG P C, HENIKOFF S. SIFT:predicting amino acid changes that affect protein function[J]. Nucleic Acids Research, 2003, 31(13):3812-3814. [25] SCHAPIRE R E, SINGER Y. Improved boosting algorithms using confidence-rated predictions[J]. Machine Learning, 1999, 37(3):297-336. [26] CHEN P-H, LIN C-J, SCHÖLKOPF B. A tutorial on v-support vector machines[J]. Applied Stochastic Models in Business and Industry, 2005, 21(2):111-136. [27] 刘操,郑宏,黎曦,等.基于多通道融合HOG特征的全天候运动车辆检测方法[J].武汉大学学报(信息科学版),2015,40(8):1048-1053.(LIU C, ZHENG H, LI X, et al. A method of moving vehicle detection in all-weather based on melted multi-channel HOG feature[J]. Geomatics and Information Science of Wuhan University, 2015, 40(8):1048-1053.) [28] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 2012 Advances in Neural Information Processing Systems. Piscataway, NJ:IEEE, 2012:1097-1105. [29] SERMANET P, EIGEN D, ZHANG X, et al. OverFeat:integrated recognition, localization and detection using convolutional networks[EB/OL]. (2014-02-24)[2018-07-28]. https://arxiv.org/pdf/1312.6229v4.pdf. [30] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE, 2014:580-587. [31] UIJLINGS J R R, van de SANDE K E A, GEVERS T, et al. Selective search for object recognition[J]. International Journal of Computer Vision, 2013, 104(2):154-171. [32] GIRSHICK R. Fast R-CNN[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway, NJ:IEEE, 2015:1440-1448. [33] JEONG J, PARK H, KWAK N. Enhancement of SSD by concatenating feature maps for object detection[EB/OL]. (2017-05-26)[2018-07-29]. https://arxiv.org/pdf/1705.09587v1.pdf. [34] FU C-Y, LIU W, RANGA A, et al. DSSD:deconvolutional single shot detector[EB/OL]. (2017-01-23)[2018-07-28]. https://arxiv.org/pdf/1701.06659v1.pdf. [35] REDMON J, FARHADI A. YOLO9000:better, faster, stronger[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE, 2017:6517-6525. [36] REDMON J, FARHADI A. YOLOv3:an incremental improvement[EB/OL]. (2018-04-08)[2018-07-30]. https://arxiv.org/pdf/1804.02767v1.pdf. [37] HE K, GKIOXARI G, DOLLAR P, et al. Mask R-CNN[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Washington, DC:IEEE Computer Society, 2017:2980-2988. [38] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. (2015-04-10)[2018-07-25]. https://arxiv.org/pdf/1409.1556v6.pdf. [39] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE, 2016:770-778. [40] SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE, 2016:2818-2826. [41] LIN T-Y, MAIRE M, BELONGIE S, et al. Microsoft COCO:common objects in context[C]//Proceedings of the 2014 European Conference on Computer Vision. Berlin:Springer, 2014:740-755. |