Journal of Computer Applications ›› 2019, Vol. 39 ›› Issue (3): 719-727.DOI: 10.11772/j.issn.1001-9081.2018081712
Previous Articles Next Articles
Received:
2018-08-17
Revised:
2018-11-09
Online:
2019-03-11
Published:
2019-03-10
Contact:
韩萌
Supported by:
作者简介:
韩萌(1982-),女,河南商丘人,副教授,博士,CCF会员,主要研究方向:大数据分类、模式挖掘;丁剑(1977-),男,宁夏固原人,副教授,主要研究方向:大数据分类、模式挖掘。
基金资助:
CLC Number:
HAN Meng, DING Jian. Survey of frequent pattern mining over data streams[J]. Journal of Computer Applications, 2019, 39(3): 719-727.
韩萌, 丁剑. 数据流频繁模式挖掘综述[J]. 计算机应用, 2019, 39(3): 719-727.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2018081712
[1] BIFET A. Adaptive stream mining:pattern learning and mining from evolving data stream[C]//Proceedings of the 2010 Conference on Adaptive Stream Mining:Pattern Learning and Mining from Evolving Data Streams. Amsterdam, Netherlands:IOS Press, 2010:1-212. [2] MANKU G S, MOTWANI R. Approximate frequency counts over data streams[C]//Proceedings of the 28th International Conference on Very Large DataBases. San Francisco, CA:Morgan Kaufmann, 2002:346-375. [3] CHARIKAR M, CHEN K, FARACH-COLTON M. Finding frequent items in data streams[C]//Proceedings of the 2002 International Colloquium on Automata, Languages and Programming, LNCS 2380. 2002:693-703. [4] YANG T, ZHOU Y, JIN H, et al. Pyramid sketch:a sketch framework for frequency estimation of data streams[J]. Proceedings of the VLDB Endowment, 2017, 10(11):1442-1453. [5] LI H-F, SHAN M-K, LEE S-Y. DSM-FI:an efficient algorithm for mining frequent itemsets in data streams[J]. Knowledge Information Systems, 2008, 17(1):79-97. [6] 李国徽,陈辉.挖掘数据流任意滑动时间窗口内频繁模式[J].软件学报,2008,19(19):2585-2596.(LI G H, CHEN H. Mining the frequent patterns in an arbitrary sliding window over online data streams[J]. Journal of Software, 2008, 19(10):2585-2596.) [7] MEMAR M, SADREDDINI M H, DEYPIR M, et al. A block-based approach for frequent itemset mining over data streams[C]//Proceedings of the 20118th International Conference on Fuzzy Systems and Knowledge Discovery. Piscataway, NJ:IEEE, 2011:1647-1651. [8] LI H-F, LEE S-Y. Mining frequent itemsets over data streams using efficient window sliding techniques[J]. Expert Systems with Applications, 2009, 36(2):1466-1477. [9] FAN G, YIN S. A frequent itemset mining algorithm based on matrix in sliding window over data steam[C]//ISDEA'13:Proceedings of the 20133rd International Conference on Intelligent System Design and Engineering Applications. Washington, DC:IEEE Computer Society, 2013:66-69. [10] CHANG J H, LEE W S. Finding recent frequent itemsets adaptively over online data streams[C]//KDD'03:Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM, 2003:487-492. [11] SHIN S J, LEE D S, LEE W S. CP-tree:an adaptive synopsis structure for compressing frequent itemsets over online data streams[J]. Information Sciences, 2014, 278:559-576. [12] SILVA A, ANTUNES C. Pushing constraints into data streams[C]//BigMine'13:Proceedings of the 2nd International Workshop on Big Data, Streams and Heterogeneous Source Mining:Algorithms, Systems, Programming Models and Applications. New York:ACM, 2013:79-86. [13] FARHAT A, GOUIDER M S, SAID L B. New algorithm for frequent itemsets mining from evidential data streams[J]. Procedia Computer Science, 2016, 96:645-653. [14] KUSUMAKUMARI V, SHERIGAR D, CHANDRAN R, et al. Frequent pattern mining on stream data using Hadoop CanTreeGTree[J]. Procedia Computer Science, 2017, 115:266-273. [15] BUSTIO-MARTÍNEZ L, CUMPLIDO R, HERNÁNDEZ-LEÍN R, et al. On the design of hardware-software architectures for frequent itemsets mining on data streams[J]. Journal of Intelligent Information Systems, 2018, 50(3):415-440. [16] LI H, ZHANG N, ZHU J, et al. Probabilistic frequent itemset mining over uncertain data streams[J]. Expert Systems with Applications, 2018, 112:274-287. [17] CHI Y, WANG H, YU P S, et al. Catch the moment:maintaining closed frequent itemsets over a data stream sliding window[J]. Knowledge and Information Systems, 2006, 10(3):265-294. [18] YEN S-J, WU C-W, LEE Y-S, et al. A fast algorithm for mining frequent closed itemsets over stream sliding window[C]//Proceedings of the 2011 IEEE International Conference on Fuzzy Systems. Piscataway, NJ:IEEE, 2011:996-1002. [19] NORI F, DEYPIR M, SADREDDINI M H. A sliding window based algorithm for frequent closed itemset mining over data streams[J]. Journal of Systems and Software, 2013, 86(3):615-623. [20] DAI C, CHEN L. An algorithm for mining frequent closed itemsets in data stream[J]. Physics Procedia, 2012, 24(C):1722-1728. [21] HAN M, DING J, Li J. TDMCS:an efficient method for mining closed frequent patterns over data streams based on time decay model[J]. International Arab Journal of Information Technology, 2017, 14(6):851-860. [22] REDDY V S, RAO T V, GOVARDHAN A. Fast and Lossless Mining of Closed Frequent Itemsets (FLMCFI) over data streams[J]. Journal of Advanced Research in Dynamical and Control Systrems, 2018, 10:256-263. [23] LEE G, YUN U, RYU K H. Sliding window based weighted maximal frequent pattern mining over data streams[J]. Expert Systems with Applications, 2014, 41(2):694-708. [24] KARIM M R, COCHEZ M, BEYAN O D, et al. Mining maximal frequent patterns in transactional databases and dynamic data streams:a Spark-based approach[J]. Information Sciences, 2018, 432:278-300. [25] CHANG Y I, LI C E, CHOU T J, et al. A weight-order-based lattice algorithm for mining maximal weighted frequent patterns over a data stream sliding window[C]//Proceedings of the 2018 IEEE International Conference on Applied System Innovation. Piscataway, NJ:IEEE, 2018:961-964. [26] HOMEM N, CARVALHO J P. Finding top-k elements in data streams[J]. Information Sciences, 2010, 180(24):4958-4974. [27] AMPHAWAN K, SOULAS J, LENCA P. Mining top-k regular episodes from sensor streams[J]. Procedia Computer Science, 2015, 69:76-85. [28] LI J, GONG S. Top-k-FCI:mining top-k frequent closed itemsets in data streams[J]. Journal of Computational Information Systems, 2011, 7(13):4819-4826. [29] TSAI P S M. Mining top-k frequent closed itemsets over data streams using the sliding window model[J]. Expert Systems with Applications, 2010, 37(10):6968-6973. [30] AMPHAWAN K, LENCA P. Mining top-k frequent-regular closed patterns[J]. Expert Systems with Applications, 2015, 42(21):7882-7894. [31] LIM Y, KANG U. Time-weighted counting for recently frequent pattern mining in data streams[J]. Knowledge and Information Systems, 2017,53(2):391-422. [32] SONG C, LIU X, GE T. Top-k frequent items and item frequency tracking over sliding windows of any sizes[C]//Proceedings of the 2017 IEEE 33rd International Conference on Data Engineering. Washington, DC:IEEE Computer Society, 2017:199-202. [33] LEUNG C K-S, HAO B, JIANG F. Constrained frequent itemset mining from uncertain data streams[C]//Proceedings of the 2010 IEEE 26th International Conference on Data Engineering Workshops. Washington, DC:IEEE Computer Society, 2010:120-127. [34] HU W-C, WANG B-N, CHENG Z-L. Mining frequent closed patterns with item constraints in data streams[C]//Proceedings of the 2008 International Conference on Machine Learning and Cybernetics. Piscataway, NJ:IEEE, 2008:274-280. [35] CUZZOCREA A, LEUNG C K S, MacKINNON R K. Mining constrained frequent itemsets from distributed uncertain data[J]. Future Generation Computer Systems, 2014, 37:117-126. [36] KIRAN R U, KITSUREGAWA M, REDDY P K. Efficient discovery of periodic-frequent patterns in very large databases[J]. Journal of Systems and Software, 2016, 112:110-121. [37] CAGLIERO L, CERQUITELLI T, CHIUSANO S, et al. Characterizing unpredictable patterns in wireless sensor network data[J]. Information Sciences, 2018,467:149-162. [38] LI C-W, JEA K-F. An adaptive approximation method to discover frequent itemsets over sliding-window-based data streams[J]. Expert Systems with Applications, 2011, 38(10):13386-13404. [39] DEYPIR M, SADREDDINI M H. EclatDS:an efficient sliding window based frequent pattern mining method for data streams[J]. Intelligent Data Analysis, 2011, 15(4):571-587. [40] CHEN H, SHU L, XIA J, et al. Mining frequent patterns in a varying-size sliding window of online transactional data streams[J]. Information Sciences, 2012, 215:15-36. [41] LI C-W, JEA K-F. An approach of support approximation to discover frequent patterns from concept-drifting data streams based on concept learning[J]. Knowledge and Information Systems, 2014, 40(3):639-671. [42] 李海峰,章宁,朱建明,等.时间敏感数据流上的频繁项集挖掘算法[J].计算机学报,2012,35(11):2283-2293.(LI H F, ZHANG N, ZHU J M, et al. Frequent itemset mining over time sensitive streams[J]. Chinese Journal of Computers, 2012, 35(11):2283-2293.) [43] DEYPIR M, SADREDDINI M H, HASHEMI S. Towards a variable size sliding window model for frequent itemset mining over data streams[J]. Computers and Industrial Engineering, 2012, 63(1):161-172. [44] 韩萌,王志海,丁剑.一种频繁模式决策树处理可变数据流[J].计算机学报,2016,39(8):1541-1554.(HAN M, WANG Z H, DING J. Efficient decision tree for evolving data streams based on frequent patterns[J]. Chinese Journal of Computers, 2016, 39(8):1541-1554.) [45] 吴枫,仲妍,吴泉源.基于时间衰减模型的数据流频繁模式挖掘[J].自动化学报,2010,36(5):674-684.(WU F, ZHONG Y, WU Q Y. Ming frequent patterns over data stream under the time decaying model[J]. Acta Automatica Sinica, 2010, 36(5):674-684.) [46] 廖国琼,吴凌琴,万常选.基于概率衰减窗口模型的不确定数据流频繁模式挖掘[J].计算机研究与发展,2012,49(5):1105-1115.(LIAO G Q, WU L Q, WANG C X. Frequent patterns mining over uncertain data streams based on probability decay window model[J]. Journal of Computer Research and Development, 2012, 49(5):1105-1115.) [47] LI H, HO C, et al. A single-scan algorithm for mining sequential patterns from data streams[J]. International Journal of Innovative Computing, 2012, 8(3):1799-1820. [48] CHEN L, MEI Q. Mining frequent items in data stream using time fading model[J]. Information Sciences, 2014, 257:54-69. [49] 韩萌,王志海,原继东.一种基于时间衰减模型的数据流闭合模式挖掘方法[J].计算机学报,2015,38(7):1473-1482.(HAN M, WANG Z H, YUAN J D. Efficient method for mining closed frequent patterns from data streams based on time decay model[J]. Chinese Journal of Computers, 2015, 38(7):1473-1482.) [50] CHEN J, CHEN P. Sequential pattern mining for uncertain data streams using sequential sketch[J]. Journal of Networks, 2014, 9(2):252-258. [51] CHENG X, SU S, XU S, et al. Differentially private maximal frequent sequence mining[J]. Computers and Security, 2015, 55(C):175-192. [52] AHMED C F, TANBEER S K, JEONG B-S, et al. Single-pass incremental and interactive mining for weighted frequent patterns[J]. Expert Systems with Applications, 2012, 39(9):7976-7994. [53] AHMED C F, TANBEER S K, JEONG B-S, et al. Interactive mining of high utility patterns over data streams[J]. Expert Systems with Applications, 2012, 39(15):11979-11991. [54] BRAUN P, CAMERON J J, CUZZOCREA A, et al. Effectively and efficiently mining frequent patterns from dense graph streams on disk[J]. Procedia Computer Science, 2014, 35:338-347. [55] CUZZOCREA A, HAN Z, JIANG F, et al. Edge-based mining of frequent subgraphs from graph streams[J]. Procedia Computer Science, 2015, 60:573-582. [56] FOURNIER-VIGER P, LIN J C W, KIRAN R U, et al. A survey of sequential pattern mining[J]. Data Science and Pattern Recognition, 2017,1(1):54-77. [57] PEI J, HAN J, MORTAZAVI-ASL B, et al. Mining sequential patterns by pattern-growth:the PrefixSpan approach[J]. IEEE Transactions on Knowledge and Data Engineering, 2004, 16(11):1424-1440. [58] TÖWS D, HASSANI M, BEECKS C, et al. Optimizing sequential pattern mining within multiple streams[EB/OL].[2018-07-07]. http://cs.emis.de/LNI/Proceedings/Proceedings242/223.pdf. [59] HASSANI M, TÖWS D, SEIDL T. Understanding the bigger picture:batch-free exploration of streaming sequential patterns with accurate prediction[C]//Proceedings of the 32nd Annual ACM Symposium on Applied Computing. New York:ACM, 2017:866-869. [60] ZIHAYAT M, CHEN Y, AN A. Memory-adaptive high utility sequential pattern mining over data streams[J]. Machine Learning, 2017, 106(6):799-836. [61] LIU Y, LIAO W, CHOUDHARY A. A two-phase algorithm for fast discovery of high utility itemsets[C]//Proceedings of the 2005 Pacific-Asia Conference on Knowledge Discovery and Data Mining, LNCS 3518. Berlin:Springer, 2005:689-695. [62] YUN U, KIM D, RYANG H, et al. Mining recent high average utility patterns based on sliding window from stream data[J]. Journal of Intelligent and Fuzzy Systems, 2016, 30(6):3605-3617. [63] YUN U, RYANG H, LEE G, et al. An efficient algorithm for mining high utility patterns from incremental databases with one database scan[J]. Knowledge-Based Systems, 2017, 124:188-206. [64] DAWAR S, SHARMA V, GOYAL V. Mining top-k high-utility itemsets from a data stream under sliding window model[J]. Applied Intelligence, 2017, 47(4):1240-1255. [65] YUN U, KIM D, YOON E, et al. Damped window based high average utility pattern mining over data streams[J]. Knowledge-Based Systems, 2018,144:188-205. [66] CHOI H-J, PARK C H. Emerging topic detection in twitter stream based on high utility pattern mining[J]. Expert Systems with Applications, 2019, 115:27-36. [67] CUZZOCREA A, LEUNG C K. Computing theoretically-sound upper bounds to expected support for frequent pattern mining problems over uncertain big data[C]//Proceedings of the 2016 International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, CCIS 611. Berlin:Springer, 2016:379-392. [68] HEMALATHA C S, VAIDEHI V, LAKSHMI R. Minimal infrequent pattern based approach for mining outliers in data streams[J]. Expert Systems with Applications, 2015, 42(4):1998-2012. [69] DUONG Q-H, RAMAMPIARO H, NØRVÅG K, et al. High utility drift detection in quantitative data streams[J]. Knowledge-Based Systems, 2018, 157:34-51. [70] de ASSUNÇÃO M D, da SILVA VEITH A, BUYYA R. Distributed data stream processing and edge computing:a survey on resource elasticity and future directions[J]. Journal of Network and Computer Applications, 2018, 103:1-17. [71] ur REHMAN M H, LIEW C S, WAH T Y, et al. Towards next-generation heterogeneous mobile data stream mining applications:opportunities, challenges, future research directions[J]. Journal of Network and Computer Applications, 2017, 79:1-24. |
[1] | Keshuai YANG, Youxi WU, Meng GENG, Jingyu LIU, Yan LI. Top-k high average utility sequential pattern mining algorithm under one-off condition [J]. Journal of Computer Applications, 2024, 44(2): 477-484. |
[2] | Shuo HUANG, Yanhui LI, Jianqiu CAO. PrivSPM: frequent sequential pattern mining algorithm under local differential privacy [J]. Journal of Computer Applications, 2023, 43(7): 2057-2064. |
[3] | Dongliang MU, Meng HAN, Ang LI, Shujuan LIU, Zhihui GAO. Overview of classification methods for complex data streams with concept drift [J]. Journal of Computer Applications, 2023, 43(6): 1664-1675. |
[4] | Zhiqiang CHEN, Meng HAN, Hongxin WU, Muhang LI, Xilong ZHANG. Multi-stage weighted concept drift detection method [J]. Journal of Computer Applications, 2023, 43(3): 776-784. |
[5] | Yufei MENG, Youxi WU, Zhen WANG, Yan LI. Contrast order-preserving pattern mining algorithm [J]. Journal of Computer Applications, 2023, 43(12): 3740-3746. |
[6] | Jun WU, Aijia OUYANG, Lin ZHANG. Statistically significant sequential patterns mining algorithm under influence degree [J]. Journal of Computer Applications, 2022, 42(9): 2713-2721. |
[7] | Le WANG, Meng HAN, Xiaojuan LI, Ni ZHANG, Haodong CHENG. Ensemble classification algorithm based on dynamic weighting function [J]. Journal of Computer Applications, 2022, 42(4): 1137-1147. |
[8] | Xiaojuan LI, Meng HAN, Le WANG, Ni ZHENG, Haodong CHENG. Dynamic weighted ensemble classification algorithm based on accuracy climbing [J]. Journal of Computer Applications, 2022, 42(1): 123-131. |
[9] | Zhihui SHAN, Meng HAN, Qiang HAN. Survey of high utility pattern mining on dynamic data [J]. Journal of Computer Applications, 2022, 42(1): 94-108. |
[10] | YIN Chunyong, ZHANG Guojie. Ensemble classification model for distributed drifted data streams [J]. Journal of Computer Applications, 2021, 41(7): 1947-1955. |
[11] | GUO Shuai, SU Yang. Encrypted traffic classification method based on data stream [J]. Journal of Computer Applications, 2021, 41(5): 1386-1391. |
[12] | FAN Zhongxin. Clustering tendency analysis algorithm based on data stream [J]. Journal of Computer Applications, 2020, 40(8): 2248-2254. |
[13] | SUN Xiaojuan, SHI Tao, HU Yuxin, TONG Jizhou, LI Bing, SONG Yao. Real-time processing of space science satellite data based on stream computing [J]. Journal of Computer Applications, 2019, 39(6): 1563-1568. |
[14] | ZHANG Yitian, YU Jiong, LU Liang, LI Ziyang. Task scheduling strategy based on data stream classification in Heron [J]. Journal of Computer Applications, 2019, 39(4): 1106-1116. |
[15] | LI Ziyang, YU Jiong, BIAN Chen, LU Liang, PU Yonglin. Dynamic task dispatching strategy for stream processing based on flow network [J]. Journal of Computer Applications, 2018, 38(9): 2560-2567. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||