[1] ZAMIR Z R. Detection of epileptic seizure in EEG signals using linear least squares preprocessing[J]. Computer Methods and Programs in Biomedicine, 2016, 133:95-109. [2] BHARDWAJ A, TIWARI A, KRISHNA R, et al. A novel genetic programming approach for epileptic seizure detection[J]. Computer Methods & Programs in Biomedicine, 2016, 124:2-18. [3] DIYKH M, LI Y. Complex networks approach for EEG signal sleep stages classification[J]. Expert Systems with Applications, 2016, 63:241-248. [4] AHMADLOU M, ADELI H, ADELI A. Graph theoretical analysis of organization of functional brain networks in ADHD[J]. Clinical Eeg & Neuroscience, 2012, 43(1):5. [5] PANZICA F, VAROTTO G, ROTONDI F, et al. Identification of the epileptogenic zone from stereo-EEG Signals:a connectivity-graph theory approach[J]. Frontiers in Neurology, 2013, 4(4):175. [6] LIU C, ZHOU W X, YUAN W K. Statistical properties of visibility graph of energy dissipation rates in three-dimensional fully developed turbulence[J]. Physica A, 2010, 389(13):2675-2681. [7] ZHU G, LI Y, WEN P P. Analysis and classification of sleep stages based on difference visibility graphs from a single-channel EEG signal[J]. IEEE Journal of Biomedical and Health Informatics, 2014, 18(6):1813-1821. [8] ZHANG J, SMALL M. Complex network from pseudoperiodic time series:topology versus dynamics[J]. Physical Review Letters, 2006, 96(23):238701. [9] DIYKH M, LI Y, WEN P. EEG sleep stages classification based on time domain features and structural graph similarity[J]. IEEE Transactions on Neural Systems & Rehabilitation Engineering, 2016, 24(11):1159-1168. [10] MANOACH D S, PRESS D Z, THANGARAJ V, et al. Schizophrenic subjects activate dorsolateral prefrontal cortex during a working memory task, as measured by fMRI[J]. Biol Psychiatry, 1999, 45(9):1128-1137. [11] LEHMANN D, FABER P L, GALDERISI S, et al. EEG microstate duration and syntax in acute, medication-naive, first-episode schizophrenia:a multi-center study[J]. Psychiatry Research Neuroimaging, 2005, 138(2):141-156. [12] 郭浩. 抑郁症静息态功能脑网络异常拓扑属性分析及分类研究[D]. 太原:太原理工大学, 2013:21-45. (GUO H. Machine learning classifier using abnormal resting state functional brain network topological metrics in major depressive disorder[D]. Taiyuan:Taiyuan University of Technology, 2013:21-45.) [13] 曹锐. 非线性与复杂网络理论在脑电数据分析中的应用研究[D]. 太原:太原理工大学, 2014:67-91. (CAO R. Nonlinear and complex network theory in the application of EEG data analysis research[D]. Taiyuan:Taiyuan University of Technology, 2014:67-91.) [14] 孙丽婷, 阴桂梅, 谭淑平, 等. 精神分裂症患者工作记忆EEG功能网络属性分析[J]. 计算机工程与应用, 2017, 53(12):25-30. (SUN L T, YIN G M, TAN S P, et al. Properties analysis of working memory EEG function network in schizophrenia[J]. Computer Engineering and Applications, 2017, 53(12):25-30.) [15] SARNTHEIN J, PETSCHE H, RAPPELSBERGER P, et al. Synchronization between prefrontal and posterior association cortex during human working memory[J]. Proceedings of the National Academy of Sciences, 1998, 95(12):7092-7096. [16] 李松, 靳静娜, 王欣, 等. 基于脑电θ波特征信息分析的大脑前额皮质在字母工作记忆中作用的研究[J]. 中国生物医学工程学报, 2015, 34(2):143-152. (LI S, JIN J N, WANG X, et al. The role of the prefrontal cortex in the characters working memory research based on the EEG theta band characteristic analysis[J]. Chinese Journal of Biomedical Engineering, 2015, 34(2):143-152.) [17] BASSETT D S, BULLMORE E, VERCHINSKI B A, et al. Hierarchical organization of human cortical networks in health and schizophrenia[J]. Journal of Neuroscience, 2008, 28(37):9239-9248. [18] HSIEH L T, RANGANATH C. Frontal midline theta oscillations during working memory maintenance and episodic encoding and retrieval[J]. NeuroImage, 2014, 85:721-729. |