[1] SEUNG H S, LEE D D. The manifold ways of perception[J]. Science, 2000, 290(5500): 2268-2269. [2] MIN W L, LU K, HE X F. Locality pursuit embedding[J]. Pattern Recognition, 2004, 37(4): 781-788. [3] GUI J, SUN Z N, JIA W, et al. Discriminant sparse neighborhood preserving embedding for face recognition[J]. Pattern Recognition, 2012, 45(8): 2884-2893. [4] WAN M H, LI M, YANG G W, et al. Feature extraction using two-dimensional maximum embedding difference[J]. Information Sciences, 2014, 274: 55-69. [5] AI Z H, WONG W K, XU Y, et al. Approximate orthogonal sparse embedding for dimensionality reduction[J]. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27(4): 723-735. [6] ROWEIS S T, SAUL L K. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290(5500): 2323-2326. [7] HE X F, YAN S C, HU Y X, et al. Face recognition using Laplacianfaces[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(3): 328-340. [8] TENENBAUM J B, SILVA V D, LANGFORD J C. A global geometric framework for nonlinear dimensionality reduction[J]. Science, 2000, 290(5500): 2319-2323. [9] BELKIN M, NIYOGI P. Laplacian eigenmaps for dimensionality reduction and data representation[J]. Neural Computation, 2003, 15(6): 1373-1396. [10] LI B, WANG C, HUANG D S. Supervised feature extraction based on orthogonal discriminant projection[J]. Neurocomputing, 2009, 73(1):191-196. [11] YAN S, XU D, ZHANG B, et al. Graph embedding and extensions: a general framework for dimensionality reduction[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(1):40-51. [12] LIN K Z, RONG Y H, WU D, et al. Discriminant locality preserving projections based on neighborhood maximum margin[J]. International Journal of Hybrid Information Technology, 2014, 7(6): 165-174. [13] LI B, HUANG D S, WANG C, et al. Feature extraction using constrained maximum variance mapping[J]. Pattern Recognition, 2008, 41(11): 3287-3294. [14] YANG W K, SUN C Y, ZHANG L. A multi-manifold discriminant analysis method for image feature extraction[J]. Pattern Recognition, 2011, 44(8): 1649-1657. [15] WAN M H, LAI Z H. Multi-manifold Locality Graph Embedding based on the Maximum Margin Criterion (MLGE/MMC) for face recognition[J].IEEE Access, 2017, 5: 9823-9830. [16] LI H, JIANG T, ZHANG K. Efficient and robust feature extraction by maximum margin criterion[J]. IEEE Transactions on Neural Networks, 2006, 17(1):157-165. [17] HOU C, NIE F, LI X, et al. Joint embedding learning and sparse regression: a framework for unsupervised feature selection[J]. IEEE Transactions on Cybernetics, 2014, 44(6): 793-804. [18] SHI J, MALIK J. Normalized cuts and image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 22(8):888-905. [19] LU J, TAN Y, WANG G. Discriminative multimanifold analysis for face recognition from a single training sample per person[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1): 39-51. [20] TURK M, PENTLAND A. Eigenfaces for recognition[J]. Journal of Cognitive Neuroscience, 1991, 3(1):72-86. [21] 董西伟,尧时茂,王玉伟,等.基于虚拟样本图像集的多流形鉴别学习算法[J].计算机应用研究, 2018,35(6):1871-1878.(DONG X W, YAO S M, WANG Y W, et al. Virtual sample image set based multi manifold discriminant learning algorithm[J]. Application Research of Computers, 2018, 35(6): 1871-1878.) [22] WITTEN I H, HALL M A. Data Mining Practical Machine Learning Tools and Techniques[M]. 3nd ed. San Francisco, CA: Morgan Kaufmann Publishers, 2011: 340-345. |